The Mizar article:

Classical and Non-classical Pasch Configurations in Ordered Affine Planes

by
Henryk Oryszczyszyn,
Krzysztof Prazmowski, and
Malgorzata Prazmowska

Received May 16, 1990

Copyright (c) 1990 Association of Mizar Users

MML identifier: PASCH
[ MML identifier index ]


environ

 vocabulary ANALOAF, DIRAF, PARSP_1, VECTSP_1, PASCH;
 notation STRUCT_0, ANALOAF, DIRAF;
 constructors DIRAF, XBOOLE_0;
 clusters ZFMISC_1, XBOOLE_0;
 theorems DIRAF, ANALOAF;

begin
reserve OAS for OAffinSpace;
reserve a,a',b,b',c,c',d,d1,d2,e1,e2,e3,e4,e5,e6,p,p',q,r,x,y,z
 for Element of OAS;

definition let OAS;
 attr OAS is satisfying_Int_Par_Pasch means
    for a,b,c,d,p st not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a
                                                         holds Mid c,p,d;
  synonym OAS satisfies_Int_Par_Pasch;
end;

definition let OAS;
 attr OAS is satisfying_Ext_Par_Pasch means
    for a,b,c,d,p st Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b
                                                        holds Mid p,a,d;
  synonym OAS satisfies_Ext_Par_Pasch;
end;

definition let OAS;
 attr OAS is satisfying_Gen_Par_Pasch means
    for a,b,c,a',b',c' st
   not LIN a,b,a' & a,a' '||' b,b' & a,a' '||' c,c' & Mid a,b,c & LIN a',b',c'
                                                    holds Mid a',b',c';
  synonym OAS satisfies_Gen_Par_Pasch;
end;

definition let OAS;
 attr OAS is satisfying_Ext_Bet_Pasch means
    for a,b,c,d,x,y st Mid a,b,d & Mid b,x,c & not LIN a,b,c
                             holds ex y st Mid a,y,c & Mid y,x,d;
  synonym OAS satisfies_Ext_Bet_Pasch;
end;

definition let OAS;
 attr OAS is satisfying_Int_Bet_Pasch means
    for a,b,c,d,x,y st Mid a,b,d & Mid a,x,c & not LIN a,b,c
                             holds ex y st Mid b,y,c & Mid x,y,d;
  synonym OAS satisfies_Int_Bet_Pasch;
end;

definition let OAS;
 attr OAS is Fanoian means
    for a,b,c,d st a,b // c,d & a,c // b,d & not LIN a,b,c
                            ex x st Mid a,x,d & Mid b,x,c;
  synonym OAS satisfies_Fano;
end;

canceled 6;

theorem
Th7: b,p // p,c & p<>c & b<>p implies ex d st
                          a,p // p,d & a,b '||' c,d & c <>d & p<>d
  proof assume that A1: b,p // p,c and A2: p<>c and A3: b<>p;
    A4: now assume A5: not LIN a,b,p; consider d such that
          A6: a,p // p,d and A7: a,b // c,d by A1,A3,ANALOAF:def 5;
          A8: now assume d=p;
                then p,c // b,a by A7,DIRAF:5;
                then b,p // b,a by A1,A2,DIRAF:6;
                then b,p '||' b,a by DIRAF:def 4; then LIN b,p,a
                by DIRAF:def 5;
               hence contradiction by A5,DIRAF:36;
              end;
A9:          now assume d=c;
            then p,d // b,p by A1,DIRAF:5;
            then a,p // b,p by A6,A8,DIRAF:6;
            then p,a // p,b by DIRAF:5; then p,a '||' p,b by DIRAF:def 4;
            then LIN p,a,b by DIRAF:def 5;
           hence contradiction by A5,DIRAF:36; end;
             a,b '||' c,d by A7,DIRAF:def 4;
         hence thesis by A6,A8,A9;
        end;
       now assume LIN a,b,p;
          then LIN p,a,b by DIRAF:36; then A10: p,a '||' p,b by DIRAF:def 5;

          A11: now assume p,a // p,b;
                 then A12: a,p // b,p by DIRAF:5;
                   Mid b,p,c by A1,DIRAF:def 3;
                 then A13: LIN b,p,c by DIRAF:34;
                 consider d such that
                           A14: Mid p,c,d and A15: c <>d by DIRAF:17;
                 A16: p<>d by A14,A15,DIRAF:12;
                   p,c // c,d by A14,DIRAF:def 3;
                 then p,c // b,p & p,c // p,d by A1,ANALOAF:def 5,DIRAF:5;
                 then b,p // p,d by A2,ANALOAF:def 5;
                 then A17: a,p // p,d by A3,A12,DIRAF:6;
                   a,p // p,c by A1,A3,A12,DIRAF:6;
                 then Mid a,p,c by DIRAF:def 3; then LIN a,p,c by DIRAF:34;
                 then LIN p,c,a & LIN p,c,b by A13,DIRAF:36;
                 then A18: p,c '||' a,b by DIRAF:40;
                   LIN p,c,c & LIN p,c,d by A14,DIRAF:34,37;
                 then p,c '||' c,d by DIRAF:40;
                 then a,b '||' c,d by A2,A18,DIRAF:28;
                hence thesis by A15,A16,A17;
               end;
            now assume p,a // b,p; then A19: a,p // p,b by DIRAF:5;
            A20:  b <> c by A1,A2,ANALOAF:def 5;
   Mid a,p,b & Mid b,p,c by A1,A19,DIRAF:def 3;
            then LIN a,p,b & LIN b,p,c by DIRAF:34;
            then LIN p,b,a & LIN p,b,b & LIN p,b,c by DIRAF:36,37;
            then LIN a,b,c & LIN a,b,b by A3,DIRAF:38;
            then a,b '||' c,b by DIRAF:40;
           hence thesis by A3,A19,A20;
          end;
         hence thesis by A10,A11,DIRAF:def 4;
        end;
       hence thesis by A4;
     end;

theorem
Th8: p,b // p,c & p<>c & b<>p implies ex d st
                           p,a // p,d & a,b '||' c,d & c <>d
   proof assume that A1: p,b // p,c and A2: p<>c and A3: b<>p;
     consider q such that A4: Mid b,p,q and A5: p<>q by DIRAF:17;
     A6: b,p // p,q by A4,DIRAF:def 3;
     then consider r such that A7: a,p // p,r and
     A8: a,b '||' q,r and A9: q<>r and A10: r<>p by A3,A5,Th7;
        b,p // c,p by A1,DIRAF:5; then p,q // c,p by A3,A6,ANALOAF:def 5;
     then q,p // p,c by DIRAF:5;
     then consider d such that A11: r,p // p,d and
      A12: r,q '||' c,d and A13: c <>d and d<>p by A2,A5,Th7;
       q,r '||' c,d by A12,DIRAF:27;
     then A14: a,b '||' c,d by A8,A9,DIRAF:28;
       p,r // d,p by A11,DIRAF:5; then a,p // d,p by A7,A10,DIRAF:6;
     then p,a // p,d by DIRAF:5;
    hence thesis by A13,A14;
   end;

theorem
   p,b '||' p,c & p<>b implies ex d st p,a '||' p,d & a,b '||' c,d
  proof assume that A1: p,b '||' p,c and A2: p<>b;
    A3: now assume A4: p<>c;
          A5: now assume p,b // p,c;
                then consider d such that A6: p,a // p,d &
                            a,b '||' c,d and c <>d by A2,A4,Th8;
                  p,a '||' p,d & a,b '||' c,d by A6,DIRAF:def 4;
                hence thesis; end;
            now assume p,b // c,p; then b,p // p,c by DIRAF:5;
            then consider d such that A7: a,p // p,d &
                      a,b '||' c,d & c <>d & d<>p by A2,A4,Th7;
              p,a // d,p & a,b '||' c,d by A7,DIRAF:5;
            then p,a '||' p,d & a,b '||' c,d by DIRAF:def 4;
           hence thesis; end;
         hence thesis by A1,A5,DIRAF:def 4; end;
      now assume A8: p=c; p,a '||' p,p & a,b '||' p,p by DIRAF:25;
     hence thesis by A8; end;
   hence thesis by A3;
  end;

canceled;

theorem
Th11: not LIN p,a,b & LIN p,b,c & LIN p,a,d1 & LIN p,a,d2 &
         a,b '||' c,d1 & a,b '||' c,d2 implies d1=d2
   proof assume that A1: not LIN p,a,b and
     A2: LIN p,b,c and A3: LIN p,a,d1 and A4: LIN p,a,d2 and
     A5: a,b '||' c,d1 and A6: a,b '||' c,d2;
     A7: LIN p,d1,a & LIN p,d2,a by A3,A4,DIRAF:36;
     A8: p<>a & p<>b & a<>b by A1,DIRAF:37;
     A9: now assume c =p;
           then A10: p,d1 '||' a,b & p,d2 '||' a,b by A5,A6,DIRAF:27;
           A11: LIN p,d1,p & LIN p,d2,p by DIRAF:37;
           A12: now assume A13: p<>d1;
                  then LIN p,d1,b by A7,A10,DIRAF:39;
                 hence contradiction by A1,A7,A11,A13,DIRAF:38; end;
              now assume A14: p<>d2; then LIN p,d2,b by A7,A10,DIRAF:39;
             hence contradiction by A1,A7,A11,A14,DIRAF:38; end;
           hence thesis by A12;
          end;
       now assume A15: p<>c; assume A16: d1<>d2;
A17:       LIN p,a,p by DIRAF:37;
       then A18: LIN d1,d2,p by A3,A4,A8,DIRAF:38;
         LIN p,a,a by DIRAF:37;
       then A19: LIN d1,d2,a by A3,A4,A8,DIRAF:38;
         c,d1 '||' c,d2 by A5,A6,A8,DIRAF:28;
       then A20: LIN c,d1,d2 by DIRAF:def 5;
       then A21: LIN d1,d2,c by DIRAF:36;
         LIN d1,d2,p & LIN d1,d2,c & LIN d1,d2,d1 by A3,A4,A8,A17,A20,DIRAF:36,
38;
       then A22: LIN p,c,d1 by A16,DIRAF:38; LIN d1,d2,d2 by DIRAF:37;
       then LIN p,c,d2 & LIN p,c,b by A2,A16,A18,A21,DIRAF:36,38;
       then LIN d1,d2,b by A15,A22,DIRAF:38;
      hence contradiction by A1,A16,A18,A19,DIRAF:38;
     end;
    hence thesis by A9;
  end;

theorem
Th12: not LIN a,b,c & a,b '||' c,d1 & a,b '||' c,d2 & a,c '||' b,d1 &
       a,c '||' b,d2 implies d1=d2
  proof assume that A1: not LIN a,b,c and A2: a,b '||' c,d1 and
     A3: a,b '||' c,d2 and A4: a,c '||' b,d1 and A5: a,c '||' b,d2;
   assume A6: d1<>d2; A7: a<>b & a<>c by A1,DIRAF:37;
   then A8: c,d1 '||' c,d2 by A2,A3,DIRAF:28;
      b,d1 '||' b,d2 by A4,A5,A7,DIRAF:28;
   then A9: LIN c,d1,d2 & LIN b,d1,d2 by A8,DIRAF:def 5;
   then A10: LIN d1,d2,c & LIN d1,d2,b by DIRAF:36;
     LIN d1,d2,c & LIN d1,d2,d1 by A9,DIRAF:36,37;
   then d1,d2 '||' c,d1 by DIRAF:40;
   then A11: d1,d2 '||' a,b or c =d1 by A2,DIRAF:28;
     now assume c =d1;
     then c,a '||' c,b by A4,DIRAF:27;
     then LIN c,a,b by DIRAF:def 5;
    hence contradiction by A1,DIRAF:36; end;
   then d1,d2 '||' b,a by A11,DIRAF:27;
   then LIN d1,d2,a by A6,A10,DIRAF:39;
  hence contradiction by A1,A6,A10,DIRAF:38;
 end;

theorem
Th13: not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a
                                          implies Mid c,p,d
  proof assume that A1: not LIN p,b,c and
    A2: Mid b,p,a and A3: LIN p,c,d and A4: b,c '||' d,a;
    assume A5: not Mid c,p,d; then A6: d<>p & p<>c by DIRAF:14;
       p,c '||' p,d by A3,DIRAF:def 5;
     then A7: p,c // p,d or p,c // d,p by DIRAF:def 4;
      now assume p,c // d,p; then c,p // p,d by DIRAF:5;
      hence contradiction by A5,DIRAF:def 3; end;
    then consider q such that A8: p,b // p,q and A9: b,c '||' d,q
                      and d<>q by A6,A7,Th8;
      p,b '||' p,q by A8,DIRAF:def 4; then A10: LIN p,b,q by DIRAF:def 5;
      LIN b,p,a by A2,DIRAF:34; then LIN p,b,a by DIRAF:36;
    then a=q by A1,A3,A4,A9,A10,Th11; then b,p // p,q by A2,DIRAF:def 3;
    then p,q // b,p by DIRAF:5; then p,b // b,p or p=q by A8,DIRAF:6;
    then p=b or p=q by ANALOAF:def 5;
    then LIN p,d,c & p,d '||' c,b by A1,A3,A9,DIRAF:27,36,37;
    then LIN p,d,p & LIN p,d,c & LIN p,d,b by A6,DIRAF:37,39;
   hence contradiction by A1,A6,DIRAF:38;
  end;

theorem
   OAS satisfies_Int_Par_Pasch
   proof let a,b,c,d,p;
    assume not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a;
    hence thesis by Th13;
  end;

theorem
Th15: Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b
                                           implies Mid p,a,d
  proof assume that A1: Mid p,b,c and A2: LIN p,a,d
    and A3: a,b '||' c,d and A4: not LIN p,a,b;
    A5: now assume b=c;
          then LIN p,b,b & LIN p,a,a & a,b '||' b,a & a,b '||' b,d
                                       by A3,DIRAF:24,37;
          then a=d by A2,A4,Th11; hence Mid p,a,d by DIRAF:14; end;
      now assume A6: b<>c; then A7: p<>c by A1,DIRAF:12;
      A8: b<>a by A4,DIRAF:37;
      A9: not LIN d,b,a
        proof assume LIN d,b,a;
          then LIN a,b,d & a,b '||' d,c by A3,DIRAF:27,36;
          then LIN a,b,c by A8,DIRAF:39; then A10: LIN b,c,a by DIRAF:36;
            LIN p,b,c by A1,DIRAF:34;
          then LIN b,c,p & LIN b,c,b by DIRAF:36,37;
         hence contradiction by A4,A6,A10,DIRAF:38; end;
      then A11: d<>a by DIRAF:37; LIN d,a,p by A2,DIRAF:36;
      then d,a '||' d,p by DIRAF:def 5; then a,d '||' d,p by DIRAF:27;
      then consider q such that
      A12: b,d '||' d,q and A13: b,a '||' p,q by A11,DIRAF:32;
      A14: not LIN b,c,d
        proof assume A15: LIN b,c,d;
          then A16: LIN b,c,d & LIN b,c,b by DIRAF:37;
            LIN c,d,b by A15,DIRAF:36; then A17: c,d '||' c,b by DIRAF:def 5;

            now assume a,b '||' c,b; then b,c '||' b,a by DIRAF:27;
            then LIN b,c,a by DIRAF:def 5;
           hence contradiction by A6,A9,A16,DIRAF:38;
          end;
          then LIN p,a,c & LIN p,b,c by A1,A2,A3,A17,DIRAF:28,34;
          then LIN p,c,b & LIN p,c,c & LIN p,c,a by DIRAF:36,37;
          then LIN b,c,a by A7,DIRAF:38;
         hence contradiction by A6,A9,A16,DIRAF:38;
        end;
      A18: Mid d,b,q
        proof
            d,b '||' d,q by A12,DIRAF:27;
          then LIN d,b,q by DIRAF:def 5; then A19: LIN b,d,q by DIRAF:36;
            a,b '||' q,p by A13,DIRAF:27;
          then A20: c,d '||' q,p by A3,A8,DIRAF:28;
            Mid c,b,p by A1,DIRAF:13;
         hence Mid d,b,q by A14,A19,A20,Th13; end;
        assume A21: not Mid p,a,d;

        A22: d<>p
          proof assume d=p;
            then LIN p,b,c & p,c '||' b,a by A1,A3,DIRAF:27,34;
            then LIN p,c,b & p,c '||' b,a by DIRAF:36;
            then LIN p,c,p & LIN p,c,a & LIN p,c,b by A7,DIRAF:37,39;
           hence contradiction by A4,A7,DIRAF:38; end;
        A23: not LIN d,p,q
          proof assume LIN d,p,q;
            then LIN d,p,p & LIN d,p,q & LIN d,p,a by A2,DIRAF:36,37;
            then A24: LIN p,q,a by A22,DIRAF:38;
A25:            p,q '||' a,b by A13,DIRAF:27;

              now assume p=q;
              then d,b '||' d,p by A12,DIRAF:27;
              then LIN d,b,p by DIRAF:def 5;
              then LIN d,p,d & LIN d,p,b & LIN d,p,a by A2,DIRAF:36,37;
             hence contradiction by A9,A22,DIRAF:38; end;
            then p<>q & LIN p,q,p & LIN p,q,a & LIN p,q,b
                                               by A24,A25,DIRAF:37,39;
            hence contradiction by A4,DIRAF:38;
          end;
          now assume Mid p,d,a;
          then Mid p,d,a & d,b '||' d,q by A12,DIRAF:27;
          then Mid p,d,a & LIN d,b,q by DIRAF:def 5;
          then Mid p,d,a & LIN d,q,b & p,q '||' b,a by A13,DIRAF:27,36;
          then Mid q,d,b by A23,Th13; then Mid b,d,q by DIRAF:13;
          then b=d by A18,DIRAF:18;
         hence contradiction by A9,DIRAF:37; end;
        then Mid a,p,d & LIN p,b,c by A1,A2,A21,DIRAF:34,35;
        then Mid b,p,c by A3,A4,Th13; then p=b by A1,DIRAF:18;
       hence contradiction by A4,DIRAF:37;
      end;
     hence thesis by A5;
    end;

theorem
   OAS satisfies_Ext_Par_Pasch
  proof let a,b,c,d,p;
    assume Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b;
    hence thesis by Th15;
  end;

theorem
Th17: not LIN a,b,a' & a,a' '||' b,b' & a,a' '||' c,c' & Mid a,b,c &
                                LIN a',b',c' implies Mid a',b',c'
  proof assume that A1: not LIN a,b,a' and A2: a,a' '||' b,b' and
    A3: a,a' '||' c,c' and A4: Mid a,b,c and A5: LIN a',b',c';
    A6: a<>a' & a<>b & b<>a' by A1,DIRAF:37;
    A7: LIN a,b,c by A4,DIRAF:34; A8: LIN b',c',a' by A5,DIRAF:36;
    A9: LIN c',b',a' by A5,DIRAF:36;
    A10: a<>c by A4,A6,DIRAF:12;
    A11: b,b' '||' c,c' by A2,A3,A6,DIRAF:28;
    A12: b=b' implies thesis
      proof assume A13: b=b';
        then A14: Mid a,b',c & LIN b',a',c' by A4,A5,DIRAF:36;
        A15: a,a' '||' c',c by A3,DIRAF:27;
          not LIN b',a,a' by A1,A13,DIRAF:36;
       hence thesis by A14,A15,Th13;
      end;
      now assume A16: b'<>c' & a'<>b' & b<>b';
      A17: not LIN b,b',a'
        proof assume A18: LIN b,b',a';
          then LIN b,b',a' & b,b' '||' a',a by A2,DIRAF:27;
          then LIN b,b',a & LIN b,b',b by A16,DIRAF:37,39;
         hence contradiction by A1,A16,A18,DIRAF:38;
        end;
      A19: c =c' implies thesis
        proof assume A20: c =c';
          A21: b',b '||' a,a' by A2,DIRAF:27;
          A22: Mid c',b,a by A4,A20,DIRAF:13;
            not LIN c',b',b
            proof assume LIN c',b',b;
              then LIN c',b',b & LIN c',b',b' by DIRAF:37;
             hence contradiction by A9,A16,A17,DIRAF:38;
            end;
          then Mid c',b',a' by A9,A21,A22,Th15;
         hence thesis by DIRAF:13;
        end;
        now assume A23: c <>c';
         a,b '||' a,c by A7,DIRAF:def 5; then c,a '||' a,b by DIRAF:27;
        then consider x such that A24: c',a '||' a,x & c',c '||' b,x
                                                      by A10,DIRAF:32;
         c,c' '||' b,x by A24,DIRAF:27;
       then a,c' '||' a,x & b,b' '||' b,x by A11,A23,A24,DIRAF:27,28;
then A25:       LIN a,c',x & LIN b,b',x by DIRAF:def 5;
       then A26: LIN x,b,b' & LIN x,a,c' by DIRAF:36;
       A27: x<>b proof
        assume x=b; then LIN a,b,c' & LIN a,b,a & LIN a,b,b
                                  by A25,DIRAF:36,37;
        then LIN c,c',a & LIN c,c',b by A6,A7,DIRAF:38;
        then c,c' '||' a,b by DIRAF:40; then b,b' '||' a,b by A11,A23,DIRAF:28;
        then a,a' '||' a,b by A2,A16,DIRAF:28;
        then LIN a,a',b by DIRAF:def 5;
        hence contradiction by A1,DIRAF:36; end;
       A28: LIN a,x,c' by A25,DIRAF:36;
       A29: x,b '||' c,c'
        proof LIN b,x,b' by A25,DIRAF:36;
         then b,x '||' b,b' by DIRAF:def 5;
         then b,x '||' c,c' by A11,A16,DIRAF:28;
         hence x,b '||' c,c' by DIRAF:27;
        end;
          not LIN a,x,b
        proof assume LIN a,x,b; then LIN x,b,a & LIN
 x,b,b by DIRAF:36,37;
         then LIN b,b',a & b,b' '||' a,a' by A2,A26,A27,DIRAF:27,38;
         hence contradiction by A16,A17,DIRAF:39;
        end;
       then Mid a,x,c' by A4,A28,A29,Th15;
       then A30: Mid c',x,a by DIRAF:13;
       A31: b',x '||' a,a'
        proof LIN b',b,x by A25,DIRAF:36;
         then b',b '||' b',x by DIRAF:def 5;
         then b,b' '||' b',x by DIRAF:27;
         hence b',x '||' a,a' by A2,A16,DIRAF:28;
        end;
        A32: x<>b'
          proof assume x=b';
            then LIN b',c',a & LIN b',c',b' by A25,DIRAF:36,37;
            then LIN a,a',b' & a,a' '||' b',b
                             by A2,A8,A16,DIRAF:27,38;
            then LIN a,a',b by A6,DIRAF:39;
           hence contradiction by A1,DIRAF:36;
           end;
          not LIN c',b',x
          proof assume LIN c',b',x;
            then LIN b',x,c' & LIN b',x,b' & LIN b',x,b
                                        by A25,DIRAF:36,37;
            then LIN c',b',b & LIN c',b',b' by A32,DIRAF:38;
           hence contradiction by A9,A16,A17,DIRAF:38;
          end;
        then Mid c',b',a' by A9,A30,A31,Th15;
       hence thesis by DIRAF:13;
      end;
     hence thesis by A19;
    end;
   hence thesis by A12,DIRAF:14;
  end;

theorem
   OAS satisfies_Gen_Par_Pasch
  proof let a,b,c,a',b',c';
   assume not LIN a,b,a' & a,a' '||' b,b' & a,a' '||' c,c' &
                                       Mid a,b,c & LIN a',b',c';
    hence thesis by Th17;
  end;

theorem
   not LIN p,a,b & a,p // p,a' & b,p // p,b' & a,b '||' a',b'
        implies a,b // b',a'
  proof assume that A1: not LIN p,a,b and
    A2: a,p // p,a' and A3: b,p // p,b' and A4: a,b '||' a',b';
       a<>p by A1,DIRAF:37;
    then consider q such that A5: b,p // p,q and A6: b,a // a',q
                                                  by A2,ANALOAF:def 5;
    A7: not LIN p,b,a by A1,DIRAF:36;
      Mid a,p,a' & Mid b,p,b' & Mid b,p,q by A2,A3,A5,DIRAF:def 3;
    then LIN a,p,a' & LIN b,p,b' & LIN b,p,q by DIRAF:34;
    then A8: LIN p,a,a' & LIN p,b,b' & LIN p,b,q by DIRAF:36;
      b,a '||' a',b' & b,a '||' a',q by A4,A6,DIRAF:27,def 4;
    then b,a // a',b' by A6,A7,A8,Th11;
   hence thesis by DIRAF:5;
  end;

theorem
   not LIN p,a,a' & p,a // p,b & p,a' // p,b' & a,a' '||' b,b'
        implies a,a' // b,b'
  proof assume that A1: not LIN p,a,a' and
    A2: p,a // p,b and A3: p,a' // p,b' and A4: a,a' '||' b,b';
    A5: not LIN p,a',a by A1,DIRAF:36; p,a '||' p,b by A2,DIRAF:def 4;
    then A6: LIN p,a,b by DIRAF:def 5; p,a' '||' p,b' by A3,DIRAF:def 4;
    then A7: LIN p,a',b' by DIRAF:def 5;
    A8: a',a '||' b,b' by A4,DIRAF:27;
    consider c such that A9: Mid a,p,c & p<>c by DIRAF:17;
    A10: a,p // p,c by A9,DIRAF:def 3;
    A11: a<>p by A1,DIRAF:37;
    then consider c' such that A12: a',p // p,c' and
                              A13: a',a // c,c' by A10,ANALOAF:def 5;
    A14: c <>c'
      proof assume c =c'; then Mid a',p,c by A12,DIRAF:def 3;
        then LIN a',p,c by DIRAF:34;
        then LIN a,p,c & LIN p,c,a' by A9,DIRAF:34,36;
        then LIN p,c,p & LIN p,c,a & LIN p,c,a' by DIRAF:36,37;
       hence contradiction by A1,A9,DIRAF:38;
      end;
    A15: p<>c'
      proof assume p=c'; then a',a '||' c,p by A13,DIRAF:def 4;
       then a,p '||' p,c & p,c '||' a,a' by A10,DIRAF:27,def 4;
       then a,p '||' a,a' by A9,DIRAF:28; then LIN a,p,a' by DIRAF:def 5;
       hence contradiction by A1,DIRAF:36; end;
      p,a // c,p by A10,DIRAF:5; then c,p // p,b by A2,A11,ANALOAF:def 5;
    then consider b'' be Element of OAS such that
    A16: c',p // p,b'' and A17: c',c // b,b'' by A9,ANALOAF:def 5;
      a',p '||' p,c' by A12,DIRAF:def 4;
    then p,a' '||' p,c' & c',p '||' p,b'' by A16,DIRAF:27,def 4;
    then p,a' '||' p,c' & p,c' '||' p,b'' by DIRAF:27;
    then p,a' '||' p,b'' by A15,DIRAF:28;
    then A18: LIN p,a',b'' by DIRAF:def 5;
      a',a '||' c',c & c',c '||' b,b'' by A13,A17,DIRAF:def 4;
    then a',a '||' b,b'' by A14,DIRAF:28;
    then c',c // a,a' & c',c // b,b' by A5,A6,A7,A8,A13,A17,A18,Th11,DIRAF:5
;
   hence a,a' // b,b' by A14,ANALOAF:def 5;
  end;

theorem
Th21: not LIN p,a,b & p,a '||' b,c & p,b '||' a,c implies
                                    p,a // b,c & p,b // a,c
  proof assume A1: not LIN p,a,b & p,a '||' b,c & p,b '||' a,c;
   consider d such that
           A2: p,a // b,d and A3: p,b // a,d and a<>d by ANALOAF:def 5;
     p,a '||' b,d & p,b '||' a,d by A2,A3,DIRAF:def 4;
  hence thesis by A1,A2,A3,Th12;
 end;

theorem
Th22: Mid p,c,b & c,d // b,a & p,d // p,a & not LIN p,a,b & p<>c
                                              implies Mid p,d,a
  proof assume that A1: Mid p,c,b and A2: c,d // b,a and
        A3: p,d // p,a and A4: not LIN p,a,b and A5: p<>c;
    A6: LIN p,c,b by A1,DIRAF:34;
      now assume A7: Mid p,a,d; then A8: LIN p,a,d by DIRAF:34;

A9:      now assume A10: b<>c & d<>a;
        A11: p<>a & p<>b & a<>b by A4,DIRAF:37;
        assume not Mid p,d,a; then Mid p,a,d by A3,DIRAF:11;
        then p,a // a,d by DIRAF:def 3; then consider e1 such that
        A12: c,a // a,e1 and A13: c,p // d,e1 by A11,ANALOAF:def 5;
        A14: Mid c,a,e1 by A12,DIRAF:def 3; then A15: LIN c,a,e1 by DIRAF:34;
        consider e2 such that
        A16: b,a // a,e2 and A17: b,c // e1,e2 by A4,A6,A12,ANALOAF:def 5;
          Mid b,a,e2 by A16,DIRAF:def 3; then LIN b,a,e2 by DIRAF:34;
        then A18: LIN a,e2,b by DIRAF:36;
        A19: b<>e2 by A11,A16,ANALOAF:def 5;
        A20: d<>e1
          proof assume d=e1; then LIN c,a,d by A14,DIRAF:34;
            then LIN a,d,c & (Mid p,d,a or Mid p,a,d) by A3,DIRAF:11,36;
            then LIN a,d,c & (LIN p,d,a or LIN p,a,d) by DIRAF:34;
            then LIN d,a,c & LIN d,a,p by DIRAF:36;
            then LIN d,a,b & LIN d,a,p & LIN d,a,a by A5,A6,DIRAF:37,41;
           hence contradiction by A4,A10,DIRAF:38; end;
        A21: c <>e1
          proof assume c =e1; then Mid c,a,c by A12,DIRAF:def 3;
           hence contradiction by A4,A6,DIRAF:12;
          end;
        consider e3 such that
        A22: b,c // e2,e3 and A23: b,e2 // c,e3 & c <>e3 by ANALOAF:def 5;
        A24: LIN d,e3,c
          proof b,a // b,e2 by A16,ANALOAF:def 5;
            then c,d // b,e2 by A2,A11,DIRAF:6;
            then c,d // c,e3 by A19,A23,DIRAF:6;
            then Mid c,d,e3 or Mid c,e3,d by DIRAF:11;
            then LIN c,d,e3 or LIN c,e3,d by DIRAF:34;
           hence LIN d,e3,c by DIRAF:36;
          end;
          Mid b,c,p by A1,DIRAF:13; then A25: b,c // c,p by DIRAF:def 3;
        then e1,e2 // c,p by A10,A17,ANALOAF:def 5;
        then A26: e1,e2 // d,e1 by A5,A13,DIRAF:6;
        then d,e1 // e1,e2 by DIRAF:5;
        then A27: d,e1 // d,e2 by ANALOAF:def 5;
        then d,e2 // d,e1 & d,e1 // c,p by A13,DIRAF:5;
        then d,e2 // c,p & c,p // b,c by A20,A25,DIRAF:5,6;
        then d,e2 // b,c by A5,DIRAF:6;
        then A28: d,e2 // e2,e3 by A10,A22,DIRAF:6;
        then Mid d,e2,e3 by DIRAF:def 3; then A29: LIN d,e2,e3 by DIRAF:34;
        A30: d<>e2 by A20,A26,ANALOAF:def 5;
        then A31: d<>e3 by A28,ANALOAF:def 5;
        A32: a<>e1
          proof assume A33: a=e1;
              p,a // a,d by A7,DIRAF:def 3;
            then d,a // a,p by DIRAF:5;
            then c,p // a,p by A10,A13,A33,DIRAF:6;
            then p,c // p,a by DIRAF:5;
            then Mid p,c,a or Mid p,a,c by DIRAF:11;
            then LIN p,c,a or LIN p,a,c by DIRAF:34;
            then LIN p,c,a & LIN p,c,p by DIRAF:36,37;
           hence contradiction by A4,A5,A6,DIRAF:38;
          end;
        A34: a<>e2
         proof assume A35: a=e2;
            e1,a // a,c by A12,DIRAF:5;
          then b,c // a,c by A17,A32,A35,DIRAF:6;
          then c,b // c,a by DIRAF:5;
          then Mid c,b,a or Mid c,a,b by DIRAF:11;
          then LIN c,b,a or LIN c,a,b by DIRAF:34;
          then LIN c,b,a & LIN c,b,p & LIN c,b,b by A6,DIRAF:36,37;
         hence contradiction by A4,A10,DIRAF:38;
        end;
          d,e2 // d,e3 by A28,ANALOAF:def 5;
        then d,e1 // d,e3 by A27,A30,DIRAF:6;
        then Mid d,e1,e3 or Mid d,e3,e1 by DIRAF:11;
        then LIN d,e1,e3 or LIN d,e3,e1 by DIRAF:34;
        then LIN d,e3,e1 & LIN c,e1,a by A15,DIRAF:36;
        then A36: LIN d,e3,a by A21,A24,DIRAF:41;
          LIN d,e3,e2 by A29,DIRAF:36;
        then A37: LIN d,e3,b by A18,A34,A36,DIRAF:41;
          LIN c,b,p by A6,DIRAF:36;
        then LIN d,e3,p by A10,A24,A37,DIRAF:41;
        hence contradiction by A4,A31,A36,A37,DIRAF:38;
       end;

         now assume b=c;
         then Mid b,d,a or Mid b,a,d by A2,DIRAF:11;
         then LIN b,d,a or LIN b,a,d by DIRAF:34;
         then LIN d,a,b & LIN d,a,p & LIN d,a,a by A8,DIRAF:36,37;
        hence a=d by A4,DIRAF:38;
       end;
      hence thesis by A9,DIRAF:14;
     end;
    hence thesis by A3,DIRAF:11;
   end;

theorem
Th23: Mid p,d,a & c,d // b,a & p,c // p,b & not LIN p,a,b & p<>c
                                              implies Mid p,c,b
  proof assume that A1: Mid p,d,a and A2: c,d // b,a and
        A3: p,c // p,b and A4: not LIN p,a,b and A5: p<>c;
      Mid p,c,b or Mid p,b,c by A3,DIRAF:11;
    then A6: LIN p,c,b or LIN p,b,c by DIRAF:34;
    then A7: LIN p,c,b by DIRAF:36;
    A8: p<>d
      proof assume p=d;
        then c,p // b,a & c,p // b,p by A2,A3,DIRAF:5;
        then b,p // b,a by A5,ANALOAF:def 5;
        then Mid b,p,a or Mid b,a,p by DIRAF:11;
        then LIN b,p,a or LIN b,a,p by DIRAF:34;
        hence contradiction by A4,DIRAF:36;
      end;
      now assume A9: Mid p,b,c;
        p,d // d,a by A1,DIRAF:def 3; then p,d // p,a by ANALOAF:def 5;
      then A10: p,a // p,d & b,a // c,d & p<>b by A2,A4,DIRAF:5,37;
        not LIN p,d,c
        proof assume LIN p,d,c;
          then LIN p,c,d & LIN p,c,p by DIRAF:36,37;
          then LIN p,d,b & LIN p,d,p & LIN p,d,a by A1,A5,A7,DIRAF:34,38;
         hence contradiction by A4,A8,DIRAF:38;
        end;
      then Mid p,a,d by A9,A10,Th22;
      then Mid d,a,p & Mid a,d,p by A1,DIRAF:13;
      then c,a // b,a by A2,DIRAF:18; then a,c // a,b by DIRAF:5;
      then Mid a,c,b or Mid a,b,c by DIRAF:11;
      then LIN a,c,b or LIN a,b,c by DIRAF:34;
      then LIN b,c,a & LIN b,c,p & LIN b,c,b by A6,DIRAF:36,37;
      then b=c by A4,DIRAF:38;
     hence Mid p,c,b by DIRAF:14;
    end;
   hence thesis by A3,DIRAF:11;
  end;

theorem
Th24: not LIN p,a,b & p,b // p,c & b,a // c,d & LIN a,p,d & p<>d
                                           implies not Mid a,p,d
  proof assume that A1: not LIN p,a,b and A2: p,b // p,c and
    A3: b,a // c,d and LIN a,p,d and A4: p<>d;
    A5: a<>p by A1,DIRAF:37;
    assume Mid a,p,d; then Mid d,p,a by DIRAF:13;
    then A6: d,p // p,a by DIRAF:def 3;
    then A7: p,d // a,p by DIRAF:5;
    A8: p<>c
      proof assume p=c;
        then b,a // a,p by A3,A4,A7,DIRAF:6;
        then Mid b,a,p by DIRAF:def 3; then Mid p,a,b by DIRAF:13;
       hence contradiction by A1,DIRAF:34;
      end;
    A9: c <>d
      proof assume c =d;
        then p,b // a,p by A2,A4,A7,DIRAF:6;
        then b,p // p,a by DIRAF:5; then Mid b,p,a by DIRAF:def 3;
        then LIN b,p,a by DIRAF:34;
       hence contradiction by A1,DIRAF:36;
      end;
    consider b' such that
                A10: c,p // p,b' & c,d // a,b' by A4,A6,ANALOAF:def 5;
    A11: p<>b'
      proof assume p=b';
        then b,a // a,p by A3,A9,A10,DIRAF:6;
        then Mid b,a,p by DIRAF:def 3; then Mid p,a,b by DIRAF:13;
       hence contradiction by A1,DIRAF:34;
      end;
      p,c // b',p by A10,DIRAF:5; then p,b // b',p by A2,A8,DIRAF:6;
    then b',p // p,b by DIRAF:5;
    then consider b'' be Element of OAS
    such that A12: a,p // p,b'' & a,b' // b,b'' by A11,ANALOAF:def 5;
      Mid a,p,b'' by A12,DIRAF:def 3; then LIN a,p,b'' by DIRAF:34;
    then A13: LIN a,b'',p by DIRAF:36;
    A14: a<>b'' by A5,A12,ANALOAF:def 5;
    A15: a<>b'
      proof assume a=b';
        then c,p // p,a & b,p // c,p by A2,A10,DIRAF:5;
        then b,p // p,a by A8,DIRAF:6;
        then Mid b,p,a by DIRAF:def 3; then LIN b,p,a by DIRAF:34;
       hence contradiction by A1,DIRAF:36;
      end;
      b,a // a,b' by A3,A9,A10,DIRAF:6;
    then b,a // b,b'' by A12,A15,DIRAF:6;
    then Mid b,a,b'' or Mid b,b'',a by DIRAF:11;
    then LIN b,a,b'' or LIN b,b'',a by DIRAF:34;
    then LIN a,b'',b & LIN a,b'', a by DIRAF:36,37;
   hence contradiction by A1,A13,A14,DIRAF:38;
  end;

theorem
Th25: p,b // p,c & b<>p
                   implies ex x st p,a // p,x & b,a // c,x
  proof assume that A1: p,b // p,c and A2: b<>p;
    A3: b,p // c,p by A1,DIRAF:5;
    A4: p=c implies p,a // p,c & b,a // c,c by DIRAF:7;
    A5:  p=a implies p,a // p,a & b,a // c,a by A1,DIRAF:4,5;
      now assume A6: p<>c & p<>a;
      consider e1 such that A7: Mid a,p,e1 & p<>e1 by DIRAF:17;
        Mid e1,p,a by A7,DIRAF:13; then A8: e1,p // p,a by DIRAF:def 3;
        a,p // p,e1 by A7,DIRAF:def 3; then consider e2 such that
      A9: b,p // p,e2 & b,a // e1,e2 by A6,ANALOAF:def 5;
      A10: now assume A11: e1<>e2 & e2<>p;
              p,b // e2,p by A9,DIRAF:5;
            then e2,p // p,c by A1,A2,ANALOAF:def 5; then consider x
            such that A12: e1,p // p,x & e1,e2 // c,x by A11,ANALOAF:def 5;
            A13: b,a // c,x by A9,A11,A12,DIRAF:6;
              p,a // p,x by A7,A8,A12,ANALOAF:def 5;
           hence thesis by A13;
         end;
      A14: now assume A15: e1=e2 & e2<>p;
            then p,e2 // a,p by A8,DIRAF:5;
            then b,p // a,p by A9,A15,DIRAF:6;
            then p,b // p,a by DIRAF:5;
            then A16: p,b // p,a & p,a // p,c by A1,A2,ANALOAF:def 5;

            A17:  p,b // b,a & p,a // a,c implies p,a // p,c & b,a // c,c by
ANALOAF:def 5;
            A18: now assume p,b // b,a & p,c // c,a;
                 then p,c // p,a by ANALOAF:def 5;
                hence p,a // p,c & b,a // c,c by DIRAF:5,7;
               end;
            A19: now assume p,a // a,b & p,a // a,c;
                 then a,b // a,c by A6,ANALOAF:def 5;
                hence p,a // p,a & b,a // c,a by DIRAF:4,5;
               end;
              now assume p,a // a,b & p,c // c,a;
              then p,c // p,a by ANALOAF:def 5;
             hence p,a // p,c & b,a // c,c by DIRAF:5,7;
            end;
           hence thesis by A16,A17,A18,A19,DIRAF:9;
          end;
        now assume p=e2;
        then b,a // p,a by A7,A8,A9,DIRAF:6;
        then A20: a,b // a,p by DIRAF:5;
        A21: now assume a,b // b,p;
             then a,b // b,p & a,b // a,p by ANALOAF:def 5;
             then A22: b,p // a,p or a=b by ANALOAF:def 5;
               now assume b,p // a,p;
               then a,p // c,p by A2,A3,ANALOAF:def 5;
              hence p,a // p,c & b,a // c,c by DIRAF:5,7;
             end;
            hence thesis by A22,DIRAF:4;
           end;
          now assume a,p // p,b;
          then a,p // p,b & a,p // a,b by ANALOAF:def 5;
          then a,b // p,b by A6,ANALOAF:def 5; then b,a // b,p by DIRAF:5;
         hence p,a // p,p & b,a // c,p by A2,A3,DIRAF:6,7;
        end;
       hence thesis by A20,A21,DIRAF:9;
      end;
     hence thesis by A10,A14;
    end;
   hence thesis by A4,A5;
  end;

theorem
Th26: Mid p,c,b implies ex x st Mid p,x,a & b,a // c,x
  proof assume A1: Mid p,c,b; then A2: p,c // c,b by DIRAF:def 3;
    A3: p=c implies Mid p,p,a & b,a // c,p by DIRAF:7,14;
    A4: now assume p=b;
          then p=c by A1,DIRAF:12;
         hence Mid p,p,a & b,a // c,p by DIRAF:7,14;
        end;
    A5: b=c implies Mid p,a,a & b,a // c,a by DIRAF:4,14;
      now assume A6: p<>c & p<>b & b<>c;
      A7: b,p // c,p
        proof Mid b,c,p by A1,DIRAF:13; then b,c // c,p by DIRAF:def 3;
          then b,c // c,p & b,c // b,p by ANALOAF:def 5;
         hence b,p // c,p by A6,ANALOAF:def 5;
        end;
      A8: now assume A9: not LIN p,a,b;
            then p<>b & p,b // p,c by A1,DIRAF:11,37;
            then consider x such that
            A10: p,a // p,x and A11: b,a // c,x by Th25;
              c,x // b,a & p,x // p,a by A10,A11,DIRAF:5;
            then Mid p,x,a by A1,A6,A9,Th22;
           hence thesis by A11;
          end;
        now assume A12: LIN p,a,b;

        A13: now assume A14: Mid p,a,b;

             A15: Mid p,c,a implies Mid p,c,a & b,a // c,c by DIRAF:7;
               now assume Mid p,a,c;
               then Mid c,a,p & Mid b,a,p by A14,DIRAF:13;
               then c,a // a,p & b,a // a,p by DIRAF:def 3;
               then A16: a,p // c,a & a,p // b,a by DIRAF:5;

               A17:  a=p implies Mid p,p,a & b,a // c,p by A7,DIRAF:14;
                 b,a // c,a implies Mid p,a,a & b,a // c,a by DIRAF:14;
              hence thesis by A16,A17,ANALOAF:def 5;
             end;
            hence thesis by A1,A14,A15,DIRAF:21;
           end;
        A18: now assume Mid a,p,b; then Mid b,p,a by DIRAF:13;
             then b,p // p,a by DIRAF:def 3; then b,p // b,a by ANALOAF:def 5
;
            hence Mid p,p,a & b,a // c,p by A6,A7,ANALOAF:def 5,DIRAF:14;
           end;
           now assume A19: Mid p,b,a;
             then p,c // p,b & p,b // b,a by A2,ANALOAF:def 5,DIRAF:def 3;
             then p,c // b,a by A6,DIRAF:6;
             then b,a // c,b by A2,A6,ANALOAF:def 5;
            hence thesis by A19;
           end;
       hence thesis by A12,A13,A18,DIRAF:35;
      end;
     hence thesis by A8;
    end;
   hence thesis by A3,A4,A5;
  end;

theorem
Th27: p<>b & Mid p,b,c implies ex x st Mid p,a,x & b,a // c,x
  proof assume that A1: p<>b and A2: Mid p,b,c;
    A3: p,b // b,c by A2,DIRAF:def 3; then A4: p,b // p,c by ANALOAF:def 5;
    A5: now assume A6: not LIN p,a,b; consider x such that
          A7: p,a // p,x & b,a // c,x by A1,A4,Th25;
          A8: p<>c by A1,A2,DIRAF:12;
          A9: p<>x
            proof assume p=x;
              then b,a // c,p & p,b // p,c by A2,A7,DIRAF:11;
              then b,a // c,p & c,p // b,p by DIRAF:5;
              then b,a // b,p by A8,DIRAF:6;
              then Mid b,a,p or Mid b,p,a by DIRAF:11;
              then LIN b,a,p or LIN b,p,a by DIRAF:34;
             hence contradiction by A6,DIRAF:36;
            end;
            not LIN p,x,c
            proof assume A10: LIN p,x,c;
                Mid p,a,x or Mid p,x,a by A7,DIRAF:11;
              then LIN p,a,x or LIN p,x,a by DIRAF:34;
              then LIN p,x,a & LIN p,x,p by DIRAF:36,37;
              then LIN p,c,a & LIN p,b,c by A2,A9,A10,DIRAF:34,38;
              then LIN p,c,a & LIN p,c,b & LIN p,c,p by DIRAF:36,37;
             hence contradiction by A6,A8,DIRAF:38;
            end;
          then Mid p,a,x by A1,A2,A7,Th22;
         hence thesis by A7;
        end;
    A11: now assume A12: LIN p,a,b & c <>b;

          A13: now assume Mid p,a,b; then Mid a,b,c by A2,DIRAF:15;
               then Mid c,b,a by DIRAF:13;
               then c,b // b,a by DIRAF:def 3;
               then c,b // b,a & c,b // c,a by ANALOAF:def 5;
              hence Mid p,a,a & b,a // c,a by A12,ANALOAF:def 5,DIRAF:14;
             end;
          A14: now assume Mid a,p,b; then Mid a,b,c by A1,A2,DIRAF:16;
               then Mid c,b,a by DIRAF:13;
               then c,b // b,a by DIRAF:def 3;
               then c,b // b,a & c,b // c,a by ANALOAF:def 5;
              hence Mid p,a,a & b,a // c,a by A12,ANALOAF:def 5,DIRAF:14;
             end;
             now assume Mid p,b,a; then A15: p,b // b,a by DIRAF:def 3;
               then A16: b,a // b,c by A1,A3,ANALOAF:def 5;

               A17: now assume A18: b,a // a,c;
                       p,b // p,a by A15,ANALOAF:def 5;
                     then A19: b,a // p,a by A1,A15,ANALOAF:def 5;

                     A20: now assume a=b;
                           then Mid p,a,a & b,a // c,a
                                              by DIRAF:7,14;
                          hence thesis;
                         end;
                       now assume p,a // a,c;
                       then Mid p,a,c & b,a // c,c by DIRAF:7,def 3;
                      hence thesis;
                     end;
                    hence thesis by A18,A19,A20,ANALOAF:def 5;
                   end;
                 now assume b,c // c,a;
                 then b,c // c,a & b,c // b,a by ANALOAF:def 5;
                hence Mid p,a,a & b,a // c,a by A12,ANALOAF:def 5,DIRAF:14;
               end;
              hence thesis by A16,A17,ANALOAF:def 5;
             end;
         hence thesis by A12,A13,A14,DIRAF:35;
        end;
      c =b implies Mid p,a,a & b,a // c,a by DIRAF:4,14;
   hence thesis by A5,A11;
  end;

theorem
Th28: not LIN p,a,b & Mid p,c,b
                       implies ex x st Mid p,x,a & a,b // x,c
  proof assume that A1: not LIN p,a,b and A2: Mid p,c,b;
    A3: p<>a & p<>b & a<>b by A1,DIRAF:37;
    A4: LIN p,c,b by A2,DIRAF:34;
    A5: Mid b,c,p by A2,DIRAF:13; then A6: b,c // c,p by DIRAF:def 3;
    A7: now assume A8: b<>c & a<>c & p<>c;
          consider e1 such that
                 A9: Mid b,e1,a & p,a // c,e1 by A5,Th26;
          consider e2 such that
                 A10: a,c // c,e2 & a,b // p,e2 by A6,A8,ANALOAF:def 5;
          consider e3 such that
                 A11: p,c // c,e3 & p,a // e2,e3 by A8,A10,ANALOAF:def 5;
          consider e4 such that
                A12: e1,c // c,e4 & e1,b // p,e4 by A6,A8,ANALOAF:def 5;
          consider e5 such that
           A13: e4,e2 // c,e5 & e4,c // e2,e5 & e2<>e5 by ANALOAF:def 5;
          A14: e3,c // c,p by A11,DIRAF:5;
          A15: not LIN p,c,a
            proof assume LIN p,c,a;
              then LIN p,c,a & LIN p,c,p by DIRAF:37;
             hence contradiction by A1,A4,A8,DIRAF:38;
            end;
          A16: not LIN a,b,c
            proof assume LIN a,b,c;
              then LIN b,c,a & LIN b,c,p & LIN b,c,b
                                     by A4,DIRAF:36,37;
             hence contradiction by A1,A8,DIRAF:38;
            end;
          A17: p<>e2
            proof assume p=e2;
              then Mid a,c,p by A10,DIRAF:def 3; then Mid p,c,a by DIRAF:13;
             hence contradiction by A15,DIRAF:34;
            end;
          A18: c <>e2
            proof assume A19: c =e2;
                p,c // c,b by A6,DIRAF:5;
              then a,b // c,b by A8,A10,A19,DIRAF:6;
              then b,a // b,c by DIRAF:5;
              then Mid b,a,c or Mid b,c,a by DIRAF:11;
              then LIN b,a,c or LIN b,c,a by DIRAF:34;
             hence contradiction by A16,DIRAF:36;
            end;
          A20: c <>e3
            proof assume c =e3;
              then c,e2 // a,p by A11,DIRAF:5;
              then a,c // a,p by A10,A18,DIRAF:6;
              then Mid a,c,p or Mid a,p,c by DIRAF:11;
              then LIN a,c,p or LIN a,p,c by DIRAF:34;
             hence contradiction by A15,DIRAF:36;
            end;
          then consider x such that
               A21: e5,c // c,x & e5,e3 // p,x by A14,ANALOAF:def 5;
          A22: p<>e3 by A8,A11,ANALOAF:def 5;
          A23: not LIN p,e3,e2
            proof assume A24: LIN p,e3,e2; p,c // p,e3 by A11,ANALOAF:def 5;
              then Mid p,c,e3 or Mid p,e3,c by DIRAF:11;
              then LIN p,c,e3 or LIN p,e3,c by DIRAF:34;
              then A25: LIN p,e3,c by DIRAF:36;
                a,c // a,e2 by A10,ANALOAF:def 5;
              then Mid a,c,e2 or Mid a,e2,c by DIRAF:11;
              then LIN a,c,e2 or LIN a,e2,c by DIRAF:34;
              then LIN c,e2,a by DIRAF:36;
              then A26: LIN p,e3,a by A18,A24,A25,DIRAF:41;
                p,c // c,b by A2,DIRAF:def 3;
              then p,c // p,b & p,c // p,e3 by A11,ANALOAF:def 5;
              then p,b // p,e3 by A8,ANALOAF:def 5;
              then Mid p,b,e3 or Mid p,e3,b by DIRAF:11;
              then LIN p,b,e3 or LIN p,e3,b by DIRAF:34;
              then LIN p,e3,b & LIN p,e3,p by DIRAF:36,37;
             hence contradiction by A1,A22,A26,DIRAF:38;
            end;
          A27: c <>e1
            proof assume c =e1;
              then LIN b,c,a by A9,DIRAF:34;
             hence contradiction by A16,DIRAF:36;
            end;
          A28: e4,c // e2,e3
            proof A29: c,e1 // e2,e3 by A3,A9,A11,ANALOAF:def 5;
                Mid e1,c,e4 by A12,DIRAF:def 3;
              then Mid e4,c,e1 by DIRAF:13;
              then e4,c // c,e1 by DIRAF:def 3;
             hence e4,c // e2,e3 by A27,A29,DIRAF:6;
            end;
          A30: b<>e1
            proof assume b=e1;
              then p,a // c,b & p,c // c,b by A2,A9,DIRAF:def 3;
              then p,a // c,b & c,b // p,c by DIRAF:5;
              then p,a // p,c by A8,DIRAF:6;
              then Mid p,a,c or Mid p,c,a by DIRAF:11;
              then LIN p,a,c or LIN p,c,a by DIRAF:34;
             hence contradiction by A15,DIRAF:36;
            end;
          A31: p<>e4
            proof assume p=e4;
              then c,e1 // p,c by A12,DIRAF:5;
              then p,a // p,c by A9,A27,DIRAF:6;
              then Mid p,a,c or Mid p,c,a by DIRAF:11;
              then LIN p,a,c or LIN p,c,a by DIRAF:34;
             hence contradiction by A15,DIRAF:36;
            end;
          A32: e2<>e4
            proof assume e2=e4;
              then c,e2 // e1,c by A12,DIRAF:5;
              then a,c // e1,c by A10,A18,DIRAF:6;
              then c,e1 // c,a by DIRAF:5;
              then p,a // c,a by A9,A27,DIRAF:6;
              then a,p // a,c by DIRAF:5;
              then Mid a,p,c or Mid a,c,p by DIRAF:11;
              then LIN a,p,c or LIN a,c,p by DIRAF:34;
             hence contradiction by A15,DIRAF:36;
            end;
          A33: c <>e4
            proof assume c =e4;
              then e1,b // p,c & p,c // c,b by A2,A12,DIRAF:def 3;
              then e1,b // c,b by A8,DIRAF:6;
              then b,e1 // b,c by DIRAF:5;
              then Mid b,e1,c or Mid b,c,e1 by DIRAF:11;
              then LIN b,e1,c or LIN b,c,e1 by DIRAF:34;
              then LIN b,e1,c & LIN b,e1,a & LIN
 b,e1,b by A9,DIRAF:34,36,37;
             hence contradiction by A16,A30,DIRAF:38;
            end;
          A34: c <>e5
            proof assume c =e5; then c,e4 // c,e2 by A13,DIRAF:5;
              then e1,c // c,e2 by A12,A33,DIRAF:6;
              then c,e2 // e1,c by DIRAF:5;
              then a,c // e1,c by A10,A18,DIRAF:6;
              then c,e1 // c,a by DIRAF:5;
              then p,a // c,a by A9,A27,DIRAF:6;
              then a,p // a,c by DIRAF:5;
              then Mid a,p,c or Mid a,c,p by DIRAF:11;
              then LIN a,p,c or LIN a,c,p by DIRAF:34;
             hence contradiction by A15,DIRAF:36;
            end;
          A35: a<>e1
            proof assume a=e1; then a,p // a,c by A9,DIRAF:5;
              then Mid a,p,c or Mid a,c,p by DIRAF:11;
              then LIN a,p,c or LIN a,c,p by DIRAF:34;
             hence contradiction by A15,DIRAF:36;
            end;
            Mid a,e1,b by A9,DIRAF:13; then a,e1 // e1,b by DIRAF:def 3;
          then a,e1 // e1,b & a,e1 // a,b by ANALOAF:def 5;
          then a,b // e1,b by A35,ANALOAF:def 5;
          then e1,b // p,e2 by A3,A10,ANALOAF:def 5;
          then A36: p,e4 // p,e2 by A12,A30,ANALOAF:def 5;
            Mid p,c,e3 by A11,DIRAF:def 3;
          then Mid p,e4,e2 by A23,A28,A31,A36,Th23;
          then p,e4 // e4,e2 by DIRAF:def 3;
          then p,e4 // e4,e2 & p,e4 // p,e2 by ANALOAF:def 5;
          then A37: p,e2 // e4,e2 by A31,ANALOAF:def 5;
          then A38: a,b // e4,e2 by A10,A17,DIRAF:6;
          then A39: a,b // c,e5 by A13,A32,DIRAF:6;
            a,b // c,e5 & c,e5 // x,c by A13,A21,A32,A38,DIRAF:5,6;
          then A40: a,b // x,c by A34,DIRAF:6;
          A41: e2<>e3
            proof assume e2=e3; then c,e2 // p,c by A11,DIRAF:5;
              then a,c // p,c by A10,A18,DIRAF:6;
              then c,a // c,p by DIRAF:5;
              then Mid c,a,p or Mid c,p,a by DIRAF:11;
              then LIN c,a,p or LIN c,p,a by DIRAF:34;
             hence contradiction by A15,DIRAF:36;
            end;
          A42: e5<>e3
            proof assume e5=e3; then c,e3 // a,b by A39,DIRAF:5;
              then p,c // a,b by A11,A20,DIRAF:6;
              then c,p // b,a by DIRAF:5;
              then b,c // b,a by A6,A8,DIRAF:6;
              then Mid b,c,a or Mid b,a,c by DIRAF:11;
              then LIN b,c,a or LIN b,a,c by DIRAF:34;
             hence contradiction by A16,DIRAF:36; end;
          A43: e3,p // e3,c
            proof Mid p,c,e3 by A11,DIRAF:def 3;
              then Mid e3,c,p by DIRAF:13;
              then e3,c // c,p by DIRAF:def 3;
              then e3,c // e3,p by ANALOAF:def 5;
             hence e3,p // e3,c by DIRAF:5; end;
          A44: p,e2 // c,e5 by A13,A32,A37,DIRAF:6;
          A45: LIN e2,e3,e5
            proof c,e1 // e4,c by A12,DIRAF:5;
              then c,e1 // e2,e5 by A13,A33,DIRAF:6;
              then p,a // e2,e5 by A9,A27,DIRAF:6;
              then e2,e3 // e2,e5 by A3,A11,ANALOAF:def 5;
              then Mid e2,e3,e5 or Mid e2,e5,e3 by DIRAF:11;
              then LIN e2,e3,e5 or LIN e2,e5,e3 by DIRAF:34;
             hence LIN e2,e3,e5 by DIRAF:36; end;
          A46: not LIN e3,e2,p by A23,DIRAF:36;
          then not Mid e2,e3,e5 by A42,A43,A44,A45,Th24;
          then Mid e3,e2,e5 or Mid e2,e5,e3 by A45,DIRAF:35;
          then e3,e2 // e2,e5 or Mid e3,e5,e2 by DIRAF:13,def 3;
          then e3,e2 // e3,e5 or e3,e5 // e5,e2 by ANALOAF:def 5,DIRAF:def 3;
          then e3,e5 // e3,e2 & c,e5 // p,e2 & Mid p,c,e3
                                by A11,A44,ANALOAF:def 5,DIRAF:5,def 3;
          then e3,e5 // e3,e2 & c,e5 // p,e2 & Mid e3,c,p by DIRAF:13;
          then Mid e3,e5,e2 by A20,A46,Th22;
          then Mid e2,e5,e3 by DIRAF:13;
          then e2,e5 // e5,e3 by DIRAF:def 3;
          then e2,e5 // e5,e3 & e2,e5 // e2,e3 by ANALOAF:def 5;
          then e2,e3 // e5,e3 by A13,ANALOAF:def 5;
          then p,a // e5,e3 by A11,A41,DIRAF:6;
          then p,a // p,x by A21,A42,DIRAF:6;
          then p,x // p,a & c,x // b,a by A40,DIRAF:5;
          then Mid p,x,a by A1,A2,A8,Th22;
         hence thesis by A40;
        end;
    A47:  b=c implies a,b // a,c & Mid p,a,a by DIRAF:4,14;
    A48:  a=c implies a,b // a,c & Mid p,a,a by DIRAF:7,14;
        p=c implies a,b // c,c & Mid p,c,a by DIRAF:7,14;
   hence thesis by A7,A47,A48;
  end;

theorem
   ex x st a,x // b,c & a,b // x,c
  proof
    A1: now assume A2: LIN a,b,c;

          A3: Mid a,b,c implies a,b // b,c & a,b // b,c by DIRAF:def 3;
          A4: now assume Mid b,a,c; then Mid c,a,b by DIRAF:13;
                then c,a // a,b by DIRAF:def 3; then c,a // c,b by ANALOAF:def
5;
               hence a,c // b,c & a,b // c,c by DIRAF:5,7;
              end;
             now assume Mid a,c,b; then a,c // c,b by DIRAF:def 3;
                then a,c // a,b by ANALOAF:def 5;
               hence a,a // b,c & a,b // a,c by DIRAF:5,7;
              end;
         hence thesis by A2,A3,A4,DIRAF:35;
        end;
      now assume A5: not LIN a,b,c;
      then A6: a<>b & a<>c & b<>c by DIRAF:37;
      consider e1 such that A7: Mid c,a,e1 & a<>e1 by DIRAF:17;
      A8: c,a // a,e1 by A7,DIRAF:def 3;
      then consider e2 such that
                  A9: b,a // a,e2 & b,c // e1,e2 by A6,ANALOAF:def 5;
      consider e3 such that A10: Mid b,c,e3 & c <>e3 by DIRAF:17;
      A11: b,c // c,e3 by A10,DIRAF:def 3;
      then consider e4 such that
                  A12: a,c // c,e4 & a,b // e3,e4 by A6,ANALOAF:def 5;
        Mid a,c,e4 by A12,DIRAF:def 3; then A13:Mid e4,c,a by DIRAF:13;
      then e4,c // c,a & c,a // c,e1 by A8,ANALOAF:def 5,DIRAF:def 3;
      then e4,c // c,e1 by A6,DIRAF:6;
      then A14: Mid e4,c,e1 by DIRAF:def 3;
      then A15: Mid e1,c,e4 by DIRAF:13;
      A16: e4<>c
        proof assume e4=c;
          then a,b // e3,c & e3,c // c,b by A11,A12,DIRAF:5;
          then a,b // c,b by A10,DIRAF:6; then b,a // b,c by DIRAF:5;
          then Mid b,a,c or Mid b,c,a by DIRAF:11;
          then LIN b,a,c or LIN b,c,a by DIRAF:34;
         hence contradiction by A5,DIRAF:36;
        end;
      then consider e5 such that
                A17: Mid e4,e3,e5 & c,e3 // e1,e5 by A14,Th27;
      A18: e4<>e3
        proof assume e4=e3;
          then Mid a,c,e3 by A12,DIRAF:def 3;
          then Mid e3,c,a by DIRAF:13;
          then LIN e3,c,a & Mid e3,c,b by A10,DIRAF:13,34;
          then LIN e3,c,a & LIN e3,c,b & LIN e3,c,c
                                        by DIRAF:34,37;
         hence contradiction by A5,A10,DIRAF:38;
        end;
      then A19: e4<>e5 by A17,DIRAF:12;
      A20: e1<>e4 by A14,A16,DIRAF:12;
      A21: not LIN e4,c,e3
           proof assume LIN e4,c,e3;
             then LIN e4,c,e3 & LIN e4,c,a & LIN
 e4,c,c by A13,DIRAF:34,37;
             then LIN c,e3,a & LIN b,c,e3 by A10,A16,DIRAF:34,38;
             then LIN c,e3,a & LIN c,e3,b & LIN c,e3,c
                                         by DIRAF:36,37;
            hence contradiction by A5,A10,DIRAF:38;
           end;
      A22: not LIN e1,e4,e3
        proof assume LIN e1,e4,e3;
          then LIN e1,e4,e3 & LIN e4,c,e1 by A14,DIRAF:34;
          then LIN e4,e1,e3 & LIN e4,e1,c & LIN e4,e1,e4 by DIRAF:36,37;
         hence contradiction by A20,A21,DIRAF:38;
        end;
      A23: not LIN e1,e5,e4
        proof assume LIN e1,e5,e4;
          then LIN e5,e4,e1 & LIN e4,e3,e5 by A17,DIRAF:34,36;
          then LIN e5,e4,e1 & LIN e5,e4,e3 & LIN e5,e4,e4
                                      by DIRAF:36,37;
         hence contradiction by A19,A22,DIRAF:38;
        end;
      then consider e6 such that
                   A24: Mid e1,e6,e5 & e5,e4 // e6,c by A15,Th28;
      consider x such that
                      A25: Mid c,x,e6 & e1,e6 // a,x by A7,Th26;
      A26: e1<>e5 by A23,DIRAF:37;
      A27: c <>e1 by A7,DIRAF:12;
      A28: not LIN c,e1,b
        proof assume LIN c,e1,b;
          then LIN c,e1,b & LIN c,a,e1 by A7,DIRAF:34;
          then LIN c,e1,b & LIN c,e1,a & LIN c,e1,c by DIRAF:36,37;
         hence contradiction by A5,A27,DIRAF:38;
        end;
      A29: e5<>e3
        proof assume e5=e3;
          then e3,c // e3,e1 by A17,DIRAF:5;
          then Mid e3,c,e1 or Mid e3,e1,c by DIRAF:11;
          then LIN e3,c,e1 or LIN e3,e1,c by DIRAF:34;
          then LIN e3,c,e1 & Mid e3,c,b by A10,DIRAF:13,36;
          then LIN e3,c,e1 & LIN e3,c,b & LIN e3,c,c
                                     by DIRAF:34,37;
         hence contradiction by A10,A28,DIRAF:38;
        end;
      A30: e1<>e6
        proof assume A31: e1=e6;
            Mid e5,e3,e4 by A17,DIRAF:13; then e5,e3 // e3,e4 by DIRAF:def 3;
          then e5,e3 // e3,e4 & e5,e3 // e5,e4 by ANALOAF:def 5;
          then e5,e4 // e3,e4 by A29,ANALOAF:def 5;
          then e3,e4 // e1,c by A19,A24,A31,ANALOAF:def 5;
          then a,b // e1,c & Mid e1,a,c by A7,A12,A18,DIRAF:6,13;
          then a,b // e1,c & e1,a // a,c by DIRAF:def 3;
          then a,b // e1,c & e1,a // a,c & e1,a // e1,c by ANALOAF:def 5;
          then a,b // e1,c & e1,c // a,c by A7,ANALOAF:def 5;
          then a,b // a,c by A27,DIRAF:6;
          then a,b // b,c or a,c // c,b by DIRAF:9;
          then Mid a,b,c or Mid a,c,b by DIRAF:def 3;
          then LIN a,b,c or LIN a,c,b by DIRAF:34;
         hence contradiction by A5,DIRAF:36;
        end;
        e1,e6 // e6,e5 by A24,DIRAF:def 3; then e1,e6 // e1,e5 by ANALOAF:def 5
;
      then e1,e5 // a,x by A25,A30,ANALOAF:def 5;
      then c,e3 // a,x & b,c // c,e3 by A10,A17,A26,DIRAF:6,def 3;
      then c,e3 // a,x & c,e3 // b,c by DIRAF:5;
      then A32: a,x // b,c by A10,ANALOAF:def 5;
        Mid e5,e3,e4 by A17,DIRAF:13; then e5,e3 // e3,e4 by DIRAF:def 3;
      then e5,e3 // e3,e4 & e5,e3 // e5,e4 by ANALOAF:def 5;
      then e3,e4 // e5,e4 by A29,ANALOAF:def 5;
      then a,b // e5,e4 by A12,A18,DIRAF:6;
      then A33: a,b // e6,c by A19,A24,DIRAF:6;
      A34: e6<>c
        proof assume e6=c; then x=c by A25,DIRAF:12;
          then c,a // c,b by A32,DIRAF:5;
          then Mid c,a,b or Mid c,b,a by DIRAF:11;
          then LIN c,a,b or LIN c,b,a by DIRAF:34;
         hence contradiction by A5,DIRAF:36;
        end;
      A35: a<>e2
        proof assume a=e2;
          then b,c // e1,a & e1,a // a,c by A8,A9,DIRAF:5;
          then b,c // a,c by A7,DIRAF:6; then c,b // c,a by DIRAF:5;
          then Mid c,b,a or Mid c,a,b by DIRAF:11;
          then LIN c,b,a or LIN c,a,b by DIRAF:34;
         hence contradiction by A5,DIRAF:36;
        end;
      A36: e6<>x
        proof assume e6=x;
          then e6,e1 // e6,a by A25,DIRAF:5;
          then Mid e6,e1,a or Mid e6,a,e1 by DIRAF:11;
          then LIN e6,e1,a or LIN e6,a,e1 by DIRAF:34;
          then LIN e6,e1,a & LIN e1,e6,e5 by A24,DIRAF:34,36;
          then LIN e6,e1,a & LIN e6,e1,e5 & LIN e6,e1,e1
                                      by DIRAF:36,37;
          then A37: LIN e1,e5,a by A30,DIRAF:38; b,c // e1,e5
                                        by A10,A11,A17,DIRAF:6;
          then e1,e2 // e1,e5 by A6,A9,ANALOAF:def 5;
          then Mid e1,e2,e5 or Mid e1,e5,e2 by DIRAF:11;
          then LIN e1,e2,e5 or LIN e1,e5,e2 by DIRAF:34;
          then LIN e1,e5,e2 & LIN e1,e5,e1 by DIRAF:36,37;
          then LIN a,e1,e2 & LIN c,a,e1 by A7,A26,A37,DIRAF:34,38;
          then LIN a,e1,e2 & LIN a,e1,c & LIN a,e1,a
                                       by DIRAF:36,37;
          then LIN a,e2,c & Mid b,a,e2 by A7,A9,DIRAF:38,def 3;
          then LIN a,e2,c & LIN b,a,e2 by DIRAF:34;
          then LIN a,e2,c & LIN a,e2,b & LIN a,e2,a
                                      by DIRAF:36,37;
         hence contradiction by A5,A35,DIRAF:38;
        end;
        Mid e6,x,c by A25,DIRAF:13;
      then e6,x // x,c by DIRAF:def 3;
      then e6,x // x,c & e6,x // e6,c by ANALOAF:def 5;
      then e6,c // x,c by A36,ANALOAF:def 5;
      then a,b // x,c by A33,A34,DIRAF:6;
     hence thesis by A32;
    end;
   hence thesis by A1;
  end;

theorem
Th30: a,b // c,d & not LIN a,b,c
                     implies ex x st Mid a,x,d & Mid b,x,c
  proof assume A1: a,b // c,d & not LIN a,b,c;
    A2: now assume A3: c =d; take x=c;
          thus Mid a,x,d & Mid b,x,c by A3,DIRAF:14;
        end;
      now assume A4: c <>d;
      consider e1 such that
      A5: a,b // d,e1 & a,d // b,e1 & b<>e1 by ANALOAF:def 5;
      consider e2 such that
      A6: c,d // b,e2 & c,b // d,e2 & d<>e2 by ANALOAF:def 5;
      A7: a<>b & b<>c by A1,DIRAF:37;
      then c,d // d,e1 by A1,A5,ANALOAF:def 5
; then A8: Mid c,d,e1 by DIRAF:def 3;
        a,b // b,e2 by A1,A4,A6,DIRAF:6; then A9: Mid a,b,e2 by DIRAF:def 3;

      A10: c <>e1
       proof assume c =e1;
         then c,d // d,c by A1,A5,A7,ANALOAF:def 5;
        hence contradiction by A4,ANALOAF:def 5;
       end;
      A11: a<>e2
       proof assume a=e2;
         then a,b // b,a by A1,A4,A6,DIRAF:6;
        hence contradiction by A7,ANALOAF:def 5;
       end;
      A12: a<>d
       proof assume a=d;
         then b,a // a,c by A1,DIRAF:5;
         then Mid b,a,c by DIRAF:def 3; then LIN b,a,c by DIRAF:34;
        hence contradiction by A1,DIRAF:36;
       end;
      A13: not LIN c,d,b
        proof assume LIN c,d,b; then c,d '||' c,b by DIRAF:def 5;
          then A14: c,d // c,b or c,d // b,c by DIRAF:def 4;
            now assume c,d // c,b; then a,b // c,b by A1,A4,DIRAF:6;
            then b,a // b,c by DIRAF:5;
            then Mid b,a,c or Mid b,c,a by DIRAF:11;
            then LIN b,a,c or LIN b,c,a by DIRAF:34;
           hence contradiction by A1,DIRAF:36;
          end;
          then a,b // b,c by A1,A4,A14,DIRAF:6;
          then Mid a,b,c by DIRAF:def 3;
         hence contradiction by A1,DIRAF:34;
        end;
      A15: not LIN a,b,d
        proof assume A16: LIN a,b,d; then A17: a,b '||' a,d by DIRAF:def 5;

          A18: now assume a,b // a,d; then c,d // a,d by A1,A7,ANALOAF:def 5;
               then d,c // d,a by DIRAF:5; then d,c '||' d,a by DIRAF:def 4;
              hence LIN d,c,a by DIRAF:def 5;
             end;
            now assume a,b // d,a; then c,d // d,a by A1,A7,ANALOAF:def 5;
            then Mid c,d,a by DIRAF:def 3; then LIN c,d,a by DIRAF:34;
           hence LIN d,c,a by DIRAF:36;
          end;
          then LIN d,a,a & LIN d,a,c & LIN d,a,b by A16,A17,A18,DIRAF:36,37,def
4;
         hence contradiction by A1,A12,DIRAF:38;
        end;
      A19: not LIN c,b,e1
        proof assume LIN c,b,e1;
          then LIN c,e1,b & LIN c,d,e1 by A8,DIRAF:34,36;
          then LIN c,e1,b & LIN c,e1,d & LIN c,e1,c by DIRAF:36,37;
         hence contradiction by A10,A13,DIRAF:38;
        end;
      A20: not LIN a,d,e2
        proof assume LIN a,d,e2;
          then LIN a,e2,d & LIN a,b,e2 by A9,DIRAF:34,36;
          then LIN a,e2,d & LIN a,e2,b & LIN a,e2,a by DIRAF:36,37;
         hence contradiction by A11,A15,DIRAF:38;
        end;
      consider x such that
                    A21: Mid c,x,b & b,e1 // x,d by A8,A19,Th28;
      consider y such that
                    A22: Mid a,y,d & d,e2 // y,b by A9,A20,Th28;
        c,b // y,b by A6,A22,DIRAF:6; then b,c // b,y by DIRAF:5;
      then Mid b,c,y or Mid b,y,c by DIRAF:11;
      then LIN b,c,y or LIN b,y,c by DIRAF:34;
      then A23: LIN b,c,y by DIRAF:36;
        a,d // x,d by A5,A21,DIRAF:6; then d,a // d,x by DIRAF:5;
      then Mid d,a,x or Mid d,x,a by DIRAF:11;
      then LIN d,a,x or LIN d,x,a by DIRAF:34;
      then A24: LIN d,a,x by DIRAF:36;
A25:      LIN c,x,b by A21,DIRAF:34;
      then A26: LIN b,c,x by DIRAF:36;
        LIN b,c,x & LIN b,c,b by A25,DIRAF:36,37;
      then A27: LIN x,y,b by A7,A23,DIRAF:38;
        LIN a,y,d by A22,DIRAF:34;
      then LIN d,a,y & LIN d,a,a by DIRAF:36,37;
      then A28: LIN x,y,a by A12,A24,DIRAF:38;
        LIN b,c,c by DIRAF:37; then LIN x,y,c by A7,A23,A26,DIRAF:38;
      then Mid a,x,d & Mid b,x,c by A1,A21,A22,A27,A28,DIRAF:13,38;
     hence thesis;
    end;
   hence thesis by A2;
  end;

canceled;

theorem OAS satisfies_Fano
 proof let a,b,c,d;
   assume a,b // c,d & a,c // b,d & not LIN a,b,c;
   hence thesis by Th30;
 end;

theorem
   a,b '||' c,d & a,c '||' b,d & not LIN a,b,c
                           implies ex x st LIN x,a,d & LIN x,b,c
  proof assume A1: a,b '||' c,d & a,c '||' b,d & not LIN a,b,c;
    then a,b // c,d & a,c // b,d by Th21;
    then consider x such that
                    A2: Mid a,x,d & Mid b,x,c by A1,Th30;
      LIN a,x,d & LIN b,x,c by A2,DIRAF:34;
    then LIN x,a,d & LIN x,b,c by DIRAF:36;
   hence thesis;
  end;

theorem
   a,b '||' c,d & a,c '||' b,d & not LIN a,b,c & LIN p,a,d &
                                  LIN p,b,c implies not LIN p,a,b
  proof assume A1: a,b '||' c,d & a,c '||' b,d & not LIN a,b,c &
                                           LIN p,a,d & LIN p,b,c;
    assume A2: LIN p,a,b;
      p<>a & LIN p,a,a by A1,DIRAF:37;
    then a<>b & LIN a,b,d & a,b '||' d,c by A1,A2,DIRAF:27,38;
   hence contradiction by A1,DIRAF:39;
  end;

theorem
Th35: Mid a,b,d & Mid b,x,c & not LIN a,b,c
                          implies ex y st Mid a,y,c & Mid y,x,d
  proof assume A1: Mid a,b,d & Mid b,x,c & not LIN a,b,c;
    then A2: Mid d,b,a & Mid c,x,b by DIRAF:13;
    A3: now assume A4: b<>d & x<>b; d,b // b,a by A2,DIRAF:def 3;
          then consider e1 such that
          A5: x,b // b,e1 & x,d // a,e1 by A4,ANALOAF:def 5;
          A6: Mid x,b,e1 by A5,DIRAF:def 3; then Mid e1,b,x by DIRAF:13;
          then A7: Mid e1,x,c by A1,A4,DIRAF:16;
          then A8: Mid c,x,e1 by DIRAF:13;
          A9: c <>e1
            proof assume c =e1;
              then Mid x,b,x by A6,A7,DIRAF:12;
             hence contradiction by A4,DIRAF:12;
            end;
          A10: x<>e1 by A4,A6,DIRAF:12;
          A11: not LIN c,a,e1
            proof assume LIN c,a,e1; then A12: LIN c,e1,a by DIRAF:36;
                LIN c,x,e1 by A8,DIRAF:34;
              then LIN c,e1,x & LIN x,b,e1 by A6,DIRAF:34,36;
              then LIN c,e1,x & LIN c,e1,e1 & LIN x,e1,b by DIRAF:36,37;
              then LIN c,e1,b & LIN c,e1,c by A10,DIRAF:37,41;
             hence contradiction by A1,A9,A12,DIRAF:38;
            end;
          then consider y such that
                        A13: Mid c,y,a & a,e1 // y,x by A8,Th28;
            a<>e1 by A11,DIRAF:37; then x,d // y,x by A5,A13,DIRAF:6;
          then d,x // x,y by DIRAF:5; then Mid d,x,y by DIRAF:def 3;
          then Mid a,y,c & Mid y,x,d by A13,DIRAF:13;
         hence thesis;
        end;
    A14: now assume A15: b<>d & x=b; take y=a;
        thus Mid a,y,c & Mid y,x,d by A1,A15,DIRAF:14;
        end;
       now assume A16: b=d; take y=c;
          thus Mid a,y,c & Mid d,x,y by A1,A16,DIRAF:14;
         thus Mid a,y,c & Mid y,x,d by A1,A16,DIRAF:13,14;
        end;
   hence thesis by A3,A14;
  end;

theorem OAS satisfies_Ext_Bet_Pasch
 proof let a,b,c,d,x,y;
   assume Mid a,b,d & Mid b,x,c & not LIN a,b,c;
   hence thesis by Th35;
 end;

theorem
Th37: Mid a,b,d & Mid a,x,c & not LIN a,b,c
                            implies ex y st Mid b,y,c & Mid x,y,d
  proof assume that A1: Mid a,b,d and
                           A2: Mid a,x,c and A3: not LIN a,b,c;
    A4: a<>b & a<>c & b<>c by A3,DIRAF:37;
    A5: now assume A6: b<>d & x<>c & a<>x;
          then consider e1 such that
                 A7: Mid a,d,e1 and A8: x,d // c,e1 by A2,Th27;
          A9: Mid d,b,a & Mid e1,d,a by A1,A7,DIRAF:13;
          then A10: LIN d,b,a & LIN e1,d,a by DIRAF:34;
          A11: e1<>b by A6,A9,DIRAF:18; Mid b,d,e1 by A1,A7,DIRAF:15;
          then Mid e1,d,b by DIRAF:13;
          then Mid e1,b,a by A9,DIRAF:16;
          then e1,b // b,a by DIRAF:def 3; then consider e2 such that
          A12: c,b // b,e2 and A13: c,e1 // a,e2 by A11,ANALOAF:def 5;
          A14: Mid c,b,e2 by A12,DIRAF:def 3;
          then A15: LIN c,b,e2 by DIRAF:34;
          A16: a<>d by A1,A6,DIRAF:12;
          A17: c <>e1
            proof assume c =e1;
             then LIN d,a,b & LIN d,a,c & LIN d,a,a
                             by A10,DIRAF:36,37;
             hence contradiction by A3,A16,DIRAF:38;
            end;
          A18: a<>e2
            proof assume a=e2; then Mid c,b,a by A12,DIRAF:def 3;
              then Mid a,b,c by DIRAF:13;
             hence contradiction by A3,DIRAF:34;
            end;
            Mid c,x,a by A2,DIRAF:13; then consider y such that
          A19: Mid c,y,e2 and A20: a,e2 // x,y by Th26;
          A21: not LIN a,x,b
            proof assume LIN a,x,b;
              then LIN a,x,b & LIN a,x,c & LIN a,x,a
                                      by A2,DIRAF:34,37;
             hence contradiction by A3,A6,DIRAF:38;
            end;
          A22: not LIN x,d,a
            proof assume LIN x,d,a;
             then LIN d,a,x & LIN d,a,b & LIN d,a,a
                            by A10,DIRAF:36,37;
             hence contradiction by A16,A21,DIRAF:38;
            end;
          then A23: x<>d by DIRAF:37;
          A24: c <>e2 by A4,A12,ANALOAF:def 5;
            x,d // a,e2 by A8,A13,A17,DIRAF:6;
          then x,d // x,y by A18,A20,DIRAF:6;
          then A25: Mid x,d,y or Mid x,y,d by DIRAF:11;
A26:          now assume A27: Mid x,d,y; then consider c' such that
            A28: Mid x,c',a and A29: Mid c',b,y by A9,A22,Th35;
            A30: b<>y
              proof assume b=y; then LIN x,d,b by A27,DIRAF:34;
                then LIN d,b,x & LIN a,x,c by A2,DIRAF:34,36;
                then LIN d,b,c & LIN d,b,b by A6,A10,DIRAF:37,41;
               hence contradiction by A3,A6,A10,DIRAF:38;
              end;
              LIN a,x,c & LIN x,c',a by A2,A28,DIRAF:34;
            then LIN x,a,c & LIN x,a,c' & LIN x,a,a
                             by DIRAF:36,37;
            then A31: LIN c,c',a by A6,DIRAF:38;
              LIN c,y,e2 & LIN c,b,e2 by A14,A19,DIRAF:34;
            then LIN c,e2,y & LIN c,e2,b & LIN c,e2,c
                                by DIRAF:36,37;
                     then LIN b,y,c & LIN c',b,y by A24,A29,DIRAF:34,38;
            then LIN b,y,c & LIN b,y,c' & LIN b,y,b
                                       by DIRAF:36,37;
            then LIN c,c',b & LIN c,c',c by A30,DIRAF:38;
            then Mid x,c,a & Mid c,x,a by A2,A3,A28,A31,DIRAF:13,38;
           hence contradiction by A6,DIRAF:18;
          end;
           then A32: Mid d,y,x by A25,DIRAF:13;
          A33: Mid c,b,y or Mid c,y,b by A14,A19,DIRAF:21;
            now assume A34: not Mid c,y,b;
            then A35: y<>b by DIRAF:14;
              Mid b,y,e2 by A19,A33,A34,DIRAF:15;
            then consider z such that
              A36: Mid b,d,z & y,d // e2,z by A35,Th27;
            A37: y<>d
              proof assume y=d; then LIN c,d,e2 by A19,DIRAF:34;
                then A38: LIN c,e2,d & LIN c,e2,b by A15,DIRAF:36;
                then LIN c,e2,a & LIN c,e2,c
                                  by A6,A10,DIRAF:37,41;
               hence contradiction by A3,A24,A38,DIRAF:38;
              end;
              d,y // y,x by A32,DIRAF:def 3; then d,y // d,x by ANALOAF:def 5;
            then y,d // x,d by DIRAF:5;
            then y,d // c,e1 by A8,A23,DIRAF:6;
            then c,e1 // e2,z by A36,A37,ANALOAF:def 5;
            then a,e2 // e2,z by A13,A17,ANALOAF:def 5;
            then Mid a,e2,z by DIRAF:def 3; then LIN a,e2,z by DIRAF:34;
            then A39: LIN a,z,e2 by DIRAF:36;
            A40: b<>e2
              proof assume b=e2;
                then c,e1 // a,b & c,e1 // x,d by A8,A13,DIRAF:5;
                then a,b // x,d & a,b // b,d by A1,A17,ANALOAF:def 5,DIRAF:def
3;
                then x,d // b,d by A4,ANALOAF:def 5;
                then d,x // d,b by DIRAF:5;
                then Mid d,x,b or Mid d,b,x by DIRAF:11;
                then LIN d,x,b or LIN d,b,x by DIRAF:34;
                then LIN d,b,x & LIN d,b,b by DIRAF:36,37;
                then LIN a,x,b & LIN a,x,c & LIN a,x,a
                              by A2,A6,A10,DIRAF:34,38;
               hence contradiction by A3,A6,DIRAF:38;
              end;
              LIN b,d,z & LIN b,d,a & LIN b,d,b
                           by A10,A36,DIRAF:34,36,37;
            then A41: LIN a,z,b & LIN a,z,a by A6,DIRAF:38;

              now assume a=z;
              then Mid b,d,a & Mid d,b,a by A1,A36,DIRAF:13;
             hence contradiction by A6,DIRAF:18;
            end;
            then A42: LIN a,e2,b & LIN a,e2,e2 & LIN b,e2,c
                           by A15,A39,A41,DIRAF:36,38;
            then LIN a,e2,c & LIN a,e2,a by A40,DIRAF:37,41;
           hence contradiction by A3,A18,A42,DIRAF:38;
          end;
          then Mid b,y,c by DIRAF:13;
         hence thesis by A25,A26;
        end;
    A43:  b=d implies Mid b,d,c & Mid x,d,d by DIRAF:14;
    A44: x=c implies Mid b,c,c & Mid x,c,d by DIRAF:14;
       a=x implies Mid b,b,c & Mid x,b,d by A1,DIRAF:14;
   hence thesis by A5,A43,A44;
  end;

theorem OAS satisfies_Int_Bet_Pasch
 proof let a,b,c,d,x,y;
   assume Mid a,b,d & Mid a,x,c & not LIN a,b,c;
   hence thesis by Th37;
 end;

theorem
   Mid p,a,b & p,a // p',a' & not LIN p,a,p' & LIN p',a',b' &
               p,p' // a,a' & p,p' // b,b' implies Mid p',a',b'
  proof assume that A1: Mid p,a,b and A2: p,a // p',a' and
    A3: not LIN p,a,p' and A4: LIN p',a',b' and A5: p,p' // a,a'
    and A6: p,p' // b,b';
    A7: p<>a & p<>p' & a<>p' by A3,DIRAF:37;
    A8: LIN p,a,b by A1,DIRAF:34; then A9: LIN p,b,a by DIRAF:36;
      now assume A10: p'<>a' & a'<>b';
      consider x such that
               A11: Mid p,x,b' and A12: b,b' // a,x by A1,Th26;
        Mid b',x,p by A11,DIRAF:13;
      then consider y such that
           A13: Mid b',y,p' and A14: p,p' // x,y by Th26;
      A15: LIN b',y,p' & LIN p,x,b' by A11,A13,DIRAF:34;
      A16: not LIN p,a,a'
        proof assume LIN p,a,a';
          then LIN p,a,a' & p,a '||' a',p' by A2,DIRAF:def 4;
         hence contradiction by A3,A7,DIRAF:39;
        end;
      then A17: a<>a' by DIRAF:37;
      A18: b<>b'
        proof assume b=b'; then LIN a',p',b by A4,DIRAF:36;
        then a',p' '||' a',b by DIRAF:def 5;
        then a',p' // a',b or a',p' // b,a' by DIRAF:def 4;
        then p',a' // a',b or p',a' // b,a' by DIRAF:5;
        then p,a // a',b or p,a // b,a' by A2,A10,DIRAF:6;
        then p,a '||' b,a' by DIRAF:def 4;
       hence contradiction by A7,A8,A16,DIRAF:39;
      end;
      A19: x<>a
        proof assume x=a;
          then LIN p,a,b' & LIN p,a,a & LIN p,a,p by A11,DIRAF:34,37;
          then A20: LIN b,b',a & LIN b,b',p by A7,A8,DIRAF:38;
            b,b' // p,p' by A6,DIRAF:5; then b,b' '||' p,p' by DIRAF:def 4;
          then LIN b,b',p' by A18,A20,DIRAF:39;
         hence contradiction by A3,A18,A20,DIRAF:38;
        end;
      A21: p<>b by A1,A7,DIRAF:12;
      A22: p'<>b'
        proof assume A23: p'=b';
          then b',p // b',b by A6,DIRAF:5;
          then Mid b',p,b or Mid b',b,p by DIRAF:11;
          then LIN b',p,b or LIN b',b,p by DIRAF:34;
          then LIN p,b,b' & LIN p,b,b & LIN p,b,p by DIRAF:36,37;
         hence contradiction by A3,A9,A21,A23,DIRAF:38;
        end;
      A24: p,p' // a,x by A6,A12,A18,DIRAF:6;
      then a,x // x,y by A7,A14,ANALOAF:def 5;
      then a,x // a,y by ANALOAF:def 5; then p,p' // a,y by A19,A24,DIRAF:6;
      then a,y // a,a' by A5,A7,ANALOAF:def 5;
      then a,y '||' a,a' by DIRAF:def 4;
      then LIN a,y,a' by DIRAF:def 5; then A25: LIN y,a',a by DIRAF:36;
        LIN p',b',y & LIN p',b',a' & LIN p',b',p'
                                      by A4,A15,DIRAF:36,37;
      then LIN y,a',p' & LIN y,a',a' by A22,DIRAF:38;
      then A26: y=a' or LIN a,a',p' by A25,DIRAF:38;
        now assume LIN a,a',p';
        then LIN a,a',p' & a,a' // p,p' by A5,DIRAF:5;
        then LIN a,a',p' & a,a' '||' p',p by DIRAF:def 4;
        then LIN a,a',p by A17,DIRAF:39;
       hence contradiction by A16,DIRAF:36;
      end;
     hence Mid p',a',b' by A13,A26,DIRAF:13;
    end;
   hence thesis by DIRAF:14;
  end;

Back to top