Copyright (c) 1990 Association of Mizar Users
environ vocabulary ANALOAF, DIRAF, PARSP_1, VECTSP_1, PASCH; notation STRUCT_0, ANALOAF, DIRAF; constructors DIRAF, XBOOLE_0; clusters ZFMISC_1, XBOOLE_0; theorems DIRAF, ANALOAF; begin reserve OAS for OAffinSpace; reserve a,a',b,b',c,c',d,d1,d2,e1,e2,e3,e4,e5,e6,p,p',q,r,x,y,z for Element of OAS; definition let OAS; attr OAS is satisfying_Int_Par_Pasch means for a,b,c,d,p st not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a holds Mid c,p,d; synonym OAS satisfies_Int_Par_Pasch; end; definition let OAS; attr OAS is satisfying_Ext_Par_Pasch means for a,b,c,d,p st Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b holds Mid p,a,d; synonym OAS satisfies_Ext_Par_Pasch; end; definition let OAS; attr OAS is satisfying_Gen_Par_Pasch means for a,b,c,a',b',c' st not LIN a,b,a' & a,a' '||' b,b' & a,a' '||' c,c' & Mid a,b,c & LIN a',b',c' holds Mid a',b',c'; synonym OAS satisfies_Gen_Par_Pasch; end; definition let OAS; attr OAS is satisfying_Ext_Bet_Pasch means for a,b,c,d,x,y st Mid a,b,d & Mid b,x,c & not LIN a,b,c holds ex y st Mid a,y,c & Mid y,x,d; synonym OAS satisfies_Ext_Bet_Pasch; end; definition let OAS; attr OAS is satisfying_Int_Bet_Pasch means for a,b,c,d,x,y st Mid a,b,d & Mid a,x,c & not LIN a,b,c holds ex y st Mid b,y,c & Mid x,y,d; synonym OAS satisfies_Int_Bet_Pasch; end; definition let OAS; attr OAS is Fanoian means for a,b,c,d st a,b // c,d & a,c // b,d & not LIN a,b,c ex x st Mid a,x,d & Mid b,x,c; synonym OAS satisfies_Fano; end; canceled 6; theorem Th7: b,p // p,c & p<>c & b<>p implies ex d st a,p // p,d & a,b '||' c,d & c <>d & p<>d proof assume that A1: b,p // p,c and A2: p<>c and A3: b<>p; A4: now assume A5: not LIN a,b,p; consider d such that A6: a,p // p,d and A7: a,b // c,d by A1,A3,ANALOAF:def 5; A8: now assume d=p; then p,c // b,a by A7,DIRAF:5; then b,p // b,a by A1,A2,DIRAF:6; then b,p '||' b,a by DIRAF:def 4; then LIN b,p,a by DIRAF:def 5; hence contradiction by A5,DIRAF:36; end; A9: now assume d=c; then p,d // b,p by A1,DIRAF:5; then a,p // b,p by A6,A8,DIRAF:6; then p,a // p,b by DIRAF:5; then p,a '||' p,b by DIRAF:def 4; then LIN p,a,b by DIRAF:def 5; hence contradiction by A5,DIRAF:36; end; a,b '||' c,d by A7,DIRAF:def 4; hence thesis by A6,A8,A9; end; now assume LIN a,b,p; then LIN p,a,b by DIRAF:36; then A10: p,a '||' p,b by DIRAF:def 5; A11: now assume p,a // p,b; then A12: a,p // b,p by DIRAF:5; Mid b,p,c by A1,DIRAF:def 3; then A13: LIN b,p,c by DIRAF:34; consider d such that A14: Mid p,c,d and A15: c <>d by DIRAF:17; A16: p<>d by A14,A15,DIRAF:12; p,c // c,d by A14,DIRAF:def 3; then p,c // b,p & p,c // p,d by A1,ANALOAF:def 5,DIRAF:5; then b,p // p,d by A2,ANALOAF:def 5; then A17: a,p // p,d by A3,A12,DIRAF:6; a,p // p,c by A1,A3,A12,DIRAF:6; then Mid a,p,c by DIRAF:def 3; then LIN a,p,c by DIRAF:34; then LIN p,c,a & LIN p,c,b by A13,DIRAF:36; then A18: p,c '||' a,b by DIRAF:40; LIN p,c,c & LIN p,c,d by A14,DIRAF:34,37; then p,c '||' c,d by DIRAF:40; then a,b '||' c,d by A2,A18,DIRAF:28; hence thesis by A15,A16,A17; end; now assume p,a // b,p; then A19: a,p // p,b by DIRAF:5; A20: b <> c by A1,A2,ANALOAF:def 5; Mid a,p,b & Mid b,p,c by A1,A19,DIRAF:def 3; then LIN a,p,b & LIN b,p,c by DIRAF:34; then LIN p,b,a & LIN p,b,b & LIN p,b,c by DIRAF:36,37; then LIN a,b,c & LIN a,b,b by A3,DIRAF:38; then a,b '||' c,b by DIRAF:40; hence thesis by A3,A19,A20; end; hence thesis by A10,A11,DIRAF:def 4; end; hence thesis by A4; end; theorem Th8: p,b // p,c & p<>c & b<>p implies ex d st p,a // p,d & a,b '||' c,d & c <>d proof assume that A1: p,b // p,c and A2: p<>c and A3: b<>p; consider q such that A4: Mid b,p,q and A5: p<>q by DIRAF:17; A6: b,p // p,q by A4,DIRAF:def 3; then consider r such that A7: a,p // p,r and A8: a,b '||' q,r and A9: q<>r and A10: r<>p by A3,A5,Th7; b,p // c,p by A1,DIRAF:5; then p,q // c,p by A3,A6,ANALOAF:def 5; then q,p // p,c by DIRAF:5; then consider d such that A11: r,p // p,d and A12: r,q '||' c,d and A13: c <>d and d<>p by A2,A5,Th7; q,r '||' c,d by A12,DIRAF:27; then A14: a,b '||' c,d by A8,A9,DIRAF:28; p,r // d,p by A11,DIRAF:5; then a,p // d,p by A7,A10,DIRAF:6; then p,a // p,d by DIRAF:5; hence thesis by A13,A14; end; theorem p,b '||' p,c & p<>b implies ex d st p,a '||' p,d & a,b '||' c,d proof assume that A1: p,b '||' p,c and A2: p<>b; A3: now assume A4: p<>c; A5: now assume p,b // p,c; then consider d such that A6: p,a // p,d & a,b '||' c,d and c <>d by A2,A4,Th8; p,a '||' p,d & a,b '||' c,d by A6,DIRAF:def 4; hence thesis; end; now assume p,b // c,p; then b,p // p,c by DIRAF:5; then consider d such that A7: a,p // p,d & a,b '||' c,d & c <>d & d<>p by A2,A4,Th7; p,a // d,p & a,b '||' c,d by A7,DIRAF:5; then p,a '||' p,d & a,b '||' c,d by DIRAF:def 4; hence thesis; end; hence thesis by A1,A5,DIRAF:def 4; end; now assume A8: p=c; p,a '||' p,p & a,b '||' p,p by DIRAF:25; hence thesis by A8; end; hence thesis by A3; end; canceled; theorem Th11: not LIN p,a,b & LIN p,b,c & LIN p,a,d1 & LIN p,a,d2 & a,b '||' c,d1 & a,b '||' c,d2 implies d1=d2 proof assume that A1: not LIN p,a,b and A2: LIN p,b,c and A3: LIN p,a,d1 and A4: LIN p,a,d2 and A5: a,b '||' c,d1 and A6: a,b '||' c,d2; A7: LIN p,d1,a & LIN p,d2,a by A3,A4,DIRAF:36; A8: p<>a & p<>b & a<>b by A1,DIRAF:37; A9: now assume c =p; then A10: p,d1 '||' a,b & p,d2 '||' a,b by A5,A6,DIRAF:27; A11: LIN p,d1,p & LIN p,d2,p by DIRAF:37; A12: now assume A13: p<>d1; then LIN p,d1,b by A7,A10,DIRAF:39; hence contradiction by A1,A7,A11,A13,DIRAF:38; end; now assume A14: p<>d2; then LIN p,d2,b by A7,A10,DIRAF:39; hence contradiction by A1,A7,A11,A14,DIRAF:38; end; hence thesis by A12; end; now assume A15: p<>c; assume A16: d1<>d2; A17: LIN p,a,p by DIRAF:37; then A18: LIN d1,d2,p by A3,A4,A8,DIRAF:38; LIN p,a,a by DIRAF:37; then A19: LIN d1,d2,a by A3,A4,A8,DIRAF:38; c,d1 '||' c,d2 by A5,A6,A8,DIRAF:28; then A20: LIN c,d1,d2 by DIRAF:def 5; then A21: LIN d1,d2,c by DIRAF:36; LIN d1,d2,p & LIN d1,d2,c & LIN d1,d2,d1 by A3,A4,A8,A17,A20,DIRAF:36, 38; then A22: LIN p,c,d1 by A16,DIRAF:38; LIN d1,d2,d2 by DIRAF:37; then LIN p,c,d2 & LIN p,c,b by A2,A16,A18,A21,DIRAF:36,38; then LIN d1,d2,b by A15,A22,DIRAF:38; hence contradiction by A1,A16,A18,A19,DIRAF:38; end; hence thesis by A9; end; theorem Th12: not LIN a,b,c & a,b '||' c,d1 & a,b '||' c,d2 & a,c '||' b,d1 & a,c '||' b,d2 implies d1=d2 proof assume that A1: not LIN a,b,c and A2: a,b '||' c,d1 and A3: a,b '||' c,d2 and A4: a,c '||' b,d1 and A5: a,c '||' b,d2; assume A6: d1<>d2; A7: a<>b & a<>c by A1,DIRAF:37; then A8: c,d1 '||' c,d2 by A2,A3,DIRAF:28; b,d1 '||' b,d2 by A4,A5,A7,DIRAF:28; then A9: LIN c,d1,d2 & LIN b,d1,d2 by A8,DIRAF:def 5; then A10: LIN d1,d2,c & LIN d1,d2,b by DIRAF:36; LIN d1,d2,c & LIN d1,d2,d1 by A9,DIRAF:36,37; then d1,d2 '||' c,d1 by DIRAF:40; then A11: d1,d2 '||' a,b or c =d1 by A2,DIRAF:28; now assume c =d1; then c,a '||' c,b by A4,DIRAF:27; then LIN c,a,b by DIRAF:def 5; hence contradiction by A1,DIRAF:36; end; then d1,d2 '||' b,a by A11,DIRAF:27; then LIN d1,d2,a by A6,A10,DIRAF:39; hence contradiction by A1,A6,A10,DIRAF:38; end; theorem Th13: not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a implies Mid c,p,d proof assume that A1: not LIN p,b,c and A2: Mid b,p,a and A3: LIN p,c,d and A4: b,c '||' d,a; assume A5: not Mid c,p,d; then A6: d<>p & p<>c by DIRAF:14; p,c '||' p,d by A3,DIRAF:def 5; then A7: p,c // p,d or p,c // d,p by DIRAF:def 4; now assume p,c // d,p; then c,p // p,d by DIRAF:5; hence contradiction by A5,DIRAF:def 3; end; then consider q such that A8: p,b // p,q and A9: b,c '||' d,q and d<>q by A6,A7,Th8; p,b '||' p,q by A8,DIRAF:def 4; then A10: LIN p,b,q by DIRAF:def 5; LIN b,p,a by A2,DIRAF:34; then LIN p,b,a by DIRAF:36; then a=q by A1,A3,A4,A9,A10,Th11; then b,p // p,q by A2,DIRAF:def 3; then p,q // b,p by DIRAF:5; then p,b // b,p or p=q by A8,DIRAF:6; then p=b or p=q by ANALOAF:def 5; then LIN p,d,c & p,d '||' c,b by A1,A3,A9,DIRAF:27,36,37; then LIN p,d,p & LIN p,d,c & LIN p,d,b by A6,DIRAF:37,39; hence contradiction by A1,A6,DIRAF:38; end; theorem OAS satisfies_Int_Par_Pasch proof let a,b,c,d,p; assume not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a; hence thesis by Th13; end; theorem Th15: Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b implies Mid p,a,d proof assume that A1: Mid p,b,c and A2: LIN p,a,d and A3: a,b '||' c,d and A4: not LIN p,a,b; A5: now assume b=c; then LIN p,b,b & LIN p,a,a & a,b '||' b,a & a,b '||' b,d by A3,DIRAF:24,37; then a=d by A2,A4,Th11; hence Mid p,a,d by DIRAF:14; end; now assume A6: b<>c; then A7: p<>c by A1,DIRAF:12; A8: b<>a by A4,DIRAF:37; A9: not LIN d,b,a proof assume LIN d,b,a; then LIN a,b,d & a,b '||' d,c by A3,DIRAF:27,36; then LIN a,b,c by A8,DIRAF:39; then A10: LIN b,c,a by DIRAF:36; LIN p,b,c by A1,DIRAF:34; then LIN b,c,p & LIN b,c,b by DIRAF:36,37; hence contradiction by A4,A6,A10,DIRAF:38; end; then A11: d<>a by DIRAF:37; LIN d,a,p by A2,DIRAF:36; then d,a '||' d,p by DIRAF:def 5; then a,d '||' d,p by DIRAF:27; then consider q such that A12: b,d '||' d,q and A13: b,a '||' p,q by A11,DIRAF:32; A14: not LIN b,c,d proof assume A15: LIN b,c,d; then A16: LIN b,c,d & LIN b,c,b by DIRAF:37; LIN c,d,b by A15,DIRAF:36; then A17: c,d '||' c,b by DIRAF:def 5; now assume a,b '||' c,b; then b,c '||' b,a by DIRAF:27; then LIN b,c,a by DIRAF:def 5; hence contradiction by A6,A9,A16,DIRAF:38; end; then LIN p,a,c & LIN p,b,c by A1,A2,A3,A17,DIRAF:28,34; then LIN p,c,b & LIN p,c,c & LIN p,c,a by DIRAF:36,37; then LIN b,c,a by A7,DIRAF:38; hence contradiction by A6,A9,A16,DIRAF:38; end; A18: Mid d,b,q proof d,b '||' d,q by A12,DIRAF:27; then LIN d,b,q by DIRAF:def 5; then A19: LIN b,d,q by DIRAF:36; a,b '||' q,p by A13,DIRAF:27; then A20: c,d '||' q,p by A3,A8,DIRAF:28; Mid c,b,p by A1,DIRAF:13; hence Mid d,b,q by A14,A19,A20,Th13; end; assume A21: not Mid p,a,d; A22: d<>p proof assume d=p; then LIN p,b,c & p,c '||' b,a by A1,A3,DIRAF:27,34; then LIN p,c,b & p,c '||' b,a by DIRAF:36; then LIN p,c,p & LIN p,c,a & LIN p,c,b by A7,DIRAF:37,39; hence contradiction by A4,A7,DIRAF:38; end; A23: not LIN d,p,q proof assume LIN d,p,q; then LIN d,p,p & LIN d,p,q & LIN d,p,a by A2,DIRAF:36,37; then A24: LIN p,q,a by A22,DIRAF:38; A25: p,q '||' a,b by A13,DIRAF:27; now assume p=q; then d,b '||' d,p by A12,DIRAF:27; then LIN d,b,p by DIRAF:def 5; then LIN d,p,d & LIN d,p,b & LIN d,p,a by A2,DIRAF:36,37; hence contradiction by A9,A22,DIRAF:38; end; then p<>q & LIN p,q,p & LIN p,q,a & LIN p,q,b by A24,A25,DIRAF:37,39; hence contradiction by A4,DIRAF:38; end; now assume Mid p,d,a; then Mid p,d,a & d,b '||' d,q by A12,DIRAF:27; then Mid p,d,a & LIN d,b,q by DIRAF:def 5; then Mid p,d,a & LIN d,q,b & p,q '||' b,a by A13,DIRAF:27,36; then Mid q,d,b by A23,Th13; then Mid b,d,q by DIRAF:13; then b=d by A18,DIRAF:18; hence contradiction by A9,DIRAF:37; end; then Mid a,p,d & LIN p,b,c by A1,A2,A21,DIRAF:34,35; then Mid b,p,c by A3,A4,Th13; then p=b by A1,DIRAF:18; hence contradiction by A4,DIRAF:37; end; hence thesis by A5; end; theorem OAS satisfies_Ext_Par_Pasch proof let a,b,c,d,p; assume Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b; hence thesis by Th15; end; theorem Th17: not LIN a,b,a' & a,a' '||' b,b' & a,a' '||' c,c' & Mid a,b,c & LIN a',b',c' implies Mid a',b',c' proof assume that A1: not LIN a,b,a' and A2: a,a' '||' b,b' and A3: a,a' '||' c,c' and A4: Mid a,b,c and A5: LIN a',b',c'; A6: a<>a' & a<>b & b<>a' by A1,DIRAF:37; A7: LIN a,b,c by A4,DIRAF:34; A8: LIN b',c',a' by A5,DIRAF:36; A9: LIN c',b',a' by A5,DIRAF:36; A10: a<>c by A4,A6,DIRAF:12; A11: b,b' '||' c,c' by A2,A3,A6,DIRAF:28; A12: b=b' implies thesis proof assume A13: b=b'; then A14: Mid a,b',c & LIN b',a',c' by A4,A5,DIRAF:36; A15: a,a' '||' c',c by A3,DIRAF:27; not LIN b',a,a' by A1,A13,DIRAF:36; hence thesis by A14,A15,Th13; end; now assume A16: b'<>c' & a'<>b' & b<>b'; A17: not LIN b,b',a' proof assume A18: LIN b,b',a'; then LIN b,b',a' & b,b' '||' a',a by A2,DIRAF:27; then LIN b,b',a & LIN b,b',b by A16,DIRAF:37,39; hence contradiction by A1,A16,A18,DIRAF:38; end; A19: c =c' implies thesis proof assume A20: c =c'; A21: b',b '||' a,a' by A2,DIRAF:27; A22: Mid c',b,a by A4,A20,DIRAF:13; not LIN c',b',b proof assume LIN c',b',b; then LIN c',b',b & LIN c',b',b' by DIRAF:37; hence contradiction by A9,A16,A17,DIRAF:38; end; then Mid c',b',a' by A9,A21,A22,Th15; hence thesis by DIRAF:13; end; now assume A23: c <>c'; a,b '||' a,c by A7,DIRAF:def 5; then c,a '||' a,b by DIRAF:27; then consider x such that A24: c',a '||' a,x & c',c '||' b,x by A10,DIRAF:32; c,c' '||' b,x by A24,DIRAF:27; then a,c' '||' a,x & b,b' '||' b,x by A11,A23,A24,DIRAF:27,28; then A25: LIN a,c',x & LIN b,b',x by DIRAF:def 5; then A26: LIN x,b,b' & LIN x,a,c' by DIRAF:36; A27: x<>b proof assume x=b; then LIN a,b,c' & LIN a,b,a & LIN a,b,b by A25,DIRAF:36,37; then LIN c,c',a & LIN c,c',b by A6,A7,DIRAF:38; then c,c' '||' a,b by DIRAF:40; then b,b' '||' a,b by A11,A23,DIRAF:28; then a,a' '||' a,b by A2,A16,DIRAF:28; then LIN a,a',b by DIRAF:def 5; hence contradiction by A1,DIRAF:36; end; A28: LIN a,x,c' by A25,DIRAF:36; A29: x,b '||' c,c' proof LIN b,x,b' by A25,DIRAF:36; then b,x '||' b,b' by DIRAF:def 5; then b,x '||' c,c' by A11,A16,DIRAF:28; hence x,b '||' c,c' by DIRAF:27; end; not LIN a,x,b proof assume LIN a,x,b; then LIN x,b,a & LIN x,b,b by DIRAF:36,37; then LIN b,b',a & b,b' '||' a,a' by A2,A26,A27,DIRAF:27,38; hence contradiction by A16,A17,DIRAF:39; end; then Mid a,x,c' by A4,A28,A29,Th15; then A30: Mid c',x,a by DIRAF:13; A31: b',x '||' a,a' proof LIN b',b,x by A25,DIRAF:36; then b',b '||' b',x by DIRAF:def 5; then b,b' '||' b',x by DIRAF:27; hence b',x '||' a,a' by A2,A16,DIRAF:28; end; A32: x<>b' proof assume x=b'; then LIN b',c',a & LIN b',c',b' by A25,DIRAF:36,37; then LIN a,a',b' & a,a' '||' b',b by A2,A8,A16,DIRAF:27,38; then LIN a,a',b by A6,DIRAF:39; hence contradiction by A1,DIRAF:36; end; not LIN c',b',x proof assume LIN c',b',x; then LIN b',x,c' & LIN b',x,b' & LIN b',x,b by A25,DIRAF:36,37; then LIN c',b',b & LIN c',b',b' by A32,DIRAF:38; hence contradiction by A9,A16,A17,DIRAF:38; end; then Mid c',b',a' by A9,A30,A31,Th15; hence thesis by DIRAF:13; end; hence thesis by A19; end; hence thesis by A12,DIRAF:14; end; theorem OAS satisfies_Gen_Par_Pasch proof let a,b,c,a',b',c'; assume not LIN a,b,a' & a,a' '||' b,b' & a,a' '||' c,c' & Mid a,b,c & LIN a',b',c'; hence thesis by Th17; end; theorem not LIN p,a,b & a,p // p,a' & b,p // p,b' & a,b '||' a',b' implies a,b // b',a' proof assume that A1: not LIN p,a,b and A2: a,p // p,a' and A3: b,p // p,b' and A4: a,b '||' a',b'; a<>p by A1,DIRAF:37; then consider q such that A5: b,p // p,q and A6: b,a // a',q by A2,ANALOAF:def 5; A7: not LIN p,b,a by A1,DIRAF:36; Mid a,p,a' & Mid b,p,b' & Mid b,p,q by A2,A3,A5,DIRAF:def 3; then LIN a,p,a' & LIN b,p,b' & LIN b,p,q by DIRAF:34; then A8: LIN p,a,a' & LIN p,b,b' & LIN p,b,q by DIRAF:36; b,a '||' a',b' & b,a '||' a',q by A4,A6,DIRAF:27,def 4; then b,a // a',b' by A6,A7,A8,Th11; hence thesis by DIRAF:5; end; theorem not LIN p,a,a' & p,a // p,b & p,a' // p,b' & a,a' '||' b,b' implies a,a' // b,b' proof assume that A1: not LIN p,a,a' and A2: p,a // p,b and A3: p,a' // p,b' and A4: a,a' '||' b,b'; A5: not LIN p,a',a by A1,DIRAF:36; p,a '||' p,b by A2,DIRAF:def 4; then A6: LIN p,a,b by DIRAF:def 5; p,a' '||' p,b' by A3,DIRAF:def 4; then A7: LIN p,a',b' by DIRAF:def 5; A8: a',a '||' b,b' by A4,DIRAF:27; consider c such that A9: Mid a,p,c & p<>c by DIRAF:17; A10: a,p // p,c by A9,DIRAF:def 3; A11: a<>p by A1,DIRAF:37; then consider c' such that A12: a',p // p,c' and A13: a',a // c,c' by A10,ANALOAF:def 5; A14: c <>c' proof assume c =c'; then Mid a',p,c by A12,DIRAF:def 3; then LIN a',p,c by DIRAF:34; then LIN a,p,c & LIN p,c,a' by A9,DIRAF:34,36; then LIN p,c,p & LIN p,c,a & LIN p,c,a' by DIRAF:36,37; hence contradiction by A1,A9,DIRAF:38; end; A15: p<>c' proof assume p=c'; then a',a '||' c,p by A13,DIRAF:def 4; then a,p '||' p,c & p,c '||' a,a' by A10,DIRAF:27,def 4; then a,p '||' a,a' by A9,DIRAF:28; then LIN a,p,a' by DIRAF:def 5; hence contradiction by A1,DIRAF:36; end; p,a // c,p by A10,DIRAF:5; then c,p // p,b by A2,A11,ANALOAF:def 5; then consider b'' be Element of OAS such that A16: c',p // p,b'' and A17: c',c // b,b'' by A9,ANALOAF:def 5; a',p '||' p,c' by A12,DIRAF:def 4; then p,a' '||' p,c' & c',p '||' p,b'' by A16,DIRAF:27,def 4; then p,a' '||' p,c' & p,c' '||' p,b'' by DIRAF:27; then p,a' '||' p,b'' by A15,DIRAF:28; then A18: LIN p,a',b'' by DIRAF:def 5; a',a '||' c',c & c',c '||' b,b'' by A13,A17,DIRAF:def 4; then a',a '||' b,b'' by A14,DIRAF:28; then c',c // a,a' & c',c // b,b' by A5,A6,A7,A8,A13,A17,A18,Th11,DIRAF:5 ; hence a,a' // b,b' by A14,ANALOAF:def 5; end; theorem Th21: not LIN p,a,b & p,a '||' b,c & p,b '||' a,c implies p,a // b,c & p,b // a,c proof assume A1: not LIN p,a,b & p,a '||' b,c & p,b '||' a,c; consider d such that A2: p,a // b,d and A3: p,b // a,d and a<>d by ANALOAF:def 5; p,a '||' b,d & p,b '||' a,d by A2,A3,DIRAF:def 4; hence thesis by A1,A2,A3,Th12; end; theorem Th22: Mid p,c,b & c,d // b,a & p,d // p,a & not LIN p,a,b & p<>c implies Mid p,d,a proof assume that A1: Mid p,c,b and A2: c,d // b,a and A3: p,d // p,a and A4: not LIN p,a,b and A5: p<>c; A6: LIN p,c,b by A1,DIRAF:34; now assume A7: Mid p,a,d; then A8: LIN p,a,d by DIRAF:34; A9: now assume A10: b<>c & d<>a; A11: p<>a & p<>b & a<>b by A4,DIRAF:37; assume not Mid p,d,a; then Mid p,a,d by A3,DIRAF:11; then p,a // a,d by DIRAF:def 3; then consider e1 such that A12: c,a // a,e1 and A13: c,p // d,e1 by A11,ANALOAF:def 5; A14: Mid c,a,e1 by A12,DIRAF:def 3; then A15: LIN c,a,e1 by DIRAF:34; consider e2 such that A16: b,a // a,e2 and A17: b,c // e1,e2 by A4,A6,A12,ANALOAF:def 5; Mid b,a,e2 by A16,DIRAF:def 3; then LIN b,a,e2 by DIRAF:34; then A18: LIN a,e2,b by DIRAF:36; A19: b<>e2 by A11,A16,ANALOAF:def 5; A20: d<>e1 proof assume d=e1; then LIN c,a,d by A14,DIRAF:34; then LIN a,d,c & (Mid p,d,a or Mid p,a,d) by A3,DIRAF:11,36; then LIN a,d,c & (LIN p,d,a or LIN p,a,d) by DIRAF:34; then LIN d,a,c & LIN d,a,p by DIRAF:36; then LIN d,a,b & LIN d,a,p & LIN d,a,a by A5,A6,DIRAF:37,41; hence contradiction by A4,A10,DIRAF:38; end; A21: c <>e1 proof assume c =e1; then Mid c,a,c by A12,DIRAF:def 3; hence contradiction by A4,A6,DIRAF:12; end; consider e3 such that A22: b,c // e2,e3 and A23: b,e2 // c,e3 & c <>e3 by ANALOAF:def 5; A24: LIN d,e3,c proof b,a // b,e2 by A16,ANALOAF:def 5; then c,d // b,e2 by A2,A11,DIRAF:6; then c,d // c,e3 by A19,A23,DIRAF:6; then Mid c,d,e3 or Mid c,e3,d by DIRAF:11; then LIN c,d,e3 or LIN c,e3,d by DIRAF:34; hence LIN d,e3,c by DIRAF:36; end; Mid b,c,p by A1,DIRAF:13; then A25: b,c // c,p by DIRAF:def 3; then e1,e2 // c,p by A10,A17,ANALOAF:def 5; then A26: e1,e2 // d,e1 by A5,A13,DIRAF:6; then d,e1 // e1,e2 by DIRAF:5; then A27: d,e1 // d,e2 by ANALOAF:def 5; then d,e2 // d,e1 & d,e1 // c,p by A13,DIRAF:5; then d,e2 // c,p & c,p // b,c by A20,A25,DIRAF:5,6; then d,e2 // b,c by A5,DIRAF:6; then A28: d,e2 // e2,e3 by A10,A22,DIRAF:6; then Mid d,e2,e3 by DIRAF:def 3; then A29: LIN d,e2,e3 by DIRAF:34; A30: d<>e2 by A20,A26,ANALOAF:def 5; then A31: d<>e3 by A28,ANALOAF:def 5; A32: a<>e1 proof assume A33: a=e1; p,a // a,d by A7,DIRAF:def 3; then d,a // a,p by DIRAF:5; then c,p // a,p by A10,A13,A33,DIRAF:6; then p,c // p,a by DIRAF:5; then Mid p,c,a or Mid p,a,c by DIRAF:11; then LIN p,c,a or LIN p,a,c by DIRAF:34; then LIN p,c,a & LIN p,c,p by DIRAF:36,37; hence contradiction by A4,A5,A6,DIRAF:38; end; A34: a<>e2 proof assume A35: a=e2; e1,a // a,c by A12,DIRAF:5; then b,c // a,c by A17,A32,A35,DIRAF:6; then c,b // c,a by DIRAF:5; then Mid c,b,a or Mid c,a,b by DIRAF:11; then LIN c,b,a or LIN c,a,b by DIRAF:34; then LIN c,b,a & LIN c,b,p & LIN c,b,b by A6,DIRAF:36,37; hence contradiction by A4,A10,DIRAF:38; end; d,e2 // d,e3 by A28,ANALOAF:def 5; then d,e1 // d,e3 by A27,A30,DIRAF:6; then Mid d,e1,e3 or Mid d,e3,e1 by DIRAF:11; then LIN d,e1,e3 or LIN d,e3,e1 by DIRAF:34; then LIN d,e3,e1 & LIN c,e1,a by A15,DIRAF:36; then A36: LIN d,e3,a by A21,A24,DIRAF:41; LIN d,e3,e2 by A29,DIRAF:36; then A37: LIN d,e3,b by A18,A34,A36,DIRAF:41; LIN c,b,p by A6,DIRAF:36; then LIN d,e3,p by A10,A24,A37,DIRAF:41; hence contradiction by A4,A31,A36,A37,DIRAF:38; end; now assume b=c; then Mid b,d,a or Mid b,a,d by A2,DIRAF:11; then LIN b,d,a or LIN b,a,d by DIRAF:34; then LIN d,a,b & LIN d,a,p & LIN d,a,a by A8,DIRAF:36,37; hence a=d by A4,DIRAF:38; end; hence thesis by A9,DIRAF:14; end; hence thesis by A3,DIRAF:11; end; theorem Th23: Mid p,d,a & c,d // b,a & p,c // p,b & not LIN p,a,b & p<>c implies Mid p,c,b proof assume that A1: Mid p,d,a and A2: c,d // b,a and A3: p,c // p,b and A4: not LIN p,a,b and A5: p<>c; Mid p,c,b or Mid p,b,c by A3,DIRAF:11; then A6: LIN p,c,b or LIN p,b,c by DIRAF:34; then A7: LIN p,c,b by DIRAF:36; A8: p<>d proof assume p=d; then c,p // b,a & c,p // b,p by A2,A3,DIRAF:5; then b,p // b,a by A5,ANALOAF:def 5; then Mid b,p,a or Mid b,a,p by DIRAF:11; then LIN b,p,a or LIN b,a,p by DIRAF:34; hence contradiction by A4,DIRAF:36; end; now assume A9: Mid p,b,c; p,d // d,a by A1,DIRAF:def 3; then p,d // p,a by ANALOAF:def 5; then A10: p,a // p,d & b,a // c,d & p<>b by A2,A4,DIRAF:5,37; not LIN p,d,c proof assume LIN p,d,c; then LIN p,c,d & LIN p,c,p by DIRAF:36,37; then LIN p,d,b & LIN p,d,p & LIN p,d,a by A1,A5,A7,DIRAF:34,38; hence contradiction by A4,A8,DIRAF:38; end; then Mid p,a,d by A9,A10,Th22; then Mid d,a,p & Mid a,d,p by A1,DIRAF:13; then c,a // b,a by A2,DIRAF:18; then a,c // a,b by DIRAF:5; then Mid a,c,b or Mid a,b,c by DIRAF:11; then LIN a,c,b or LIN a,b,c by DIRAF:34; then LIN b,c,a & LIN b,c,p & LIN b,c,b by A6,DIRAF:36,37; then b=c by A4,DIRAF:38; hence Mid p,c,b by DIRAF:14; end; hence thesis by A3,DIRAF:11; end; theorem Th24: not LIN p,a,b & p,b // p,c & b,a // c,d & LIN a,p,d & p<>d implies not Mid a,p,d proof assume that A1: not LIN p,a,b and A2: p,b // p,c and A3: b,a // c,d and LIN a,p,d and A4: p<>d; A5: a<>p by A1,DIRAF:37; assume Mid a,p,d; then Mid d,p,a by DIRAF:13; then A6: d,p // p,a by DIRAF:def 3; then A7: p,d // a,p by DIRAF:5; A8: p<>c proof assume p=c; then b,a // a,p by A3,A4,A7,DIRAF:6; then Mid b,a,p by DIRAF:def 3; then Mid p,a,b by DIRAF:13; hence contradiction by A1,DIRAF:34; end; A9: c <>d proof assume c =d; then p,b // a,p by A2,A4,A7,DIRAF:6; then b,p // p,a by DIRAF:5; then Mid b,p,a by DIRAF:def 3; then LIN b,p,a by DIRAF:34; hence contradiction by A1,DIRAF:36; end; consider b' such that A10: c,p // p,b' & c,d // a,b' by A4,A6,ANALOAF:def 5; A11: p<>b' proof assume p=b'; then b,a // a,p by A3,A9,A10,DIRAF:6; then Mid b,a,p by DIRAF:def 3; then Mid p,a,b by DIRAF:13; hence contradiction by A1,DIRAF:34; end; p,c // b',p by A10,DIRAF:5; then p,b // b',p by A2,A8,DIRAF:6; then b',p // p,b by DIRAF:5; then consider b'' be Element of OAS such that A12: a,p // p,b'' & a,b' // b,b'' by A11,ANALOAF:def 5; Mid a,p,b'' by A12,DIRAF:def 3; then LIN a,p,b'' by DIRAF:34; then A13: LIN a,b'',p by DIRAF:36; A14: a<>b'' by A5,A12,ANALOAF:def 5; A15: a<>b' proof assume a=b'; then c,p // p,a & b,p // c,p by A2,A10,DIRAF:5; then b,p // p,a by A8,DIRAF:6; then Mid b,p,a by DIRAF:def 3; then LIN b,p,a by DIRAF:34; hence contradiction by A1,DIRAF:36; end; b,a // a,b' by A3,A9,A10,DIRAF:6; then b,a // b,b'' by A12,A15,DIRAF:6; then Mid b,a,b'' or Mid b,b'',a by DIRAF:11; then LIN b,a,b'' or LIN b,b'',a by DIRAF:34; then LIN a,b'',b & LIN a,b'', a by DIRAF:36,37; hence contradiction by A1,A13,A14,DIRAF:38; end; theorem Th25: p,b // p,c & b<>p implies ex x st p,a // p,x & b,a // c,x proof assume that A1: p,b // p,c and A2: b<>p; A3: b,p // c,p by A1,DIRAF:5; A4: p=c implies p,a // p,c & b,a // c,c by DIRAF:7; A5: p=a implies p,a // p,a & b,a // c,a by A1,DIRAF:4,5; now assume A6: p<>c & p<>a; consider e1 such that A7: Mid a,p,e1 & p<>e1 by DIRAF:17; Mid e1,p,a by A7,DIRAF:13; then A8: e1,p // p,a by DIRAF:def 3; a,p // p,e1 by A7,DIRAF:def 3; then consider e2 such that A9: b,p // p,e2 & b,a // e1,e2 by A6,ANALOAF:def 5; A10: now assume A11: e1<>e2 & e2<>p; p,b // e2,p by A9,DIRAF:5; then e2,p // p,c by A1,A2,ANALOAF:def 5; then consider x such that A12: e1,p // p,x & e1,e2 // c,x by A11,ANALOAF:def 5; A13: b,a // c,x by A9,A11,A12,DIRAF:6; p,a // p,x by A7,A8,A12,ANALOAF:def 5; hence thesis by A13; end; A14: now assume A15: e1=e2 & e2<>p; then p,e2 // a,p by A8,DIRAF:5; then b,p // a,p by A9,A15,DIRAF:6; then p,b // p,a by DIRAF:5; then A16: p,b // p,a & p,a // p,c by A1,A2,ANALOAF:def 5; A17: p,b // b,a & p,a // a,c implies p,a // p,c & b,a // c,c by ANALOAF:def 5; A18: now assume p,b // b,a & p,c // c,a; then p,c // p,a by ANALOAF:def 5; hence p,a // p,c & b,a // c,c by DIRAF:5,7; end; A19: now assume p,a // a,b & p,a // a,c; then a,b // a,c by A6,ANALOAF:def 5; hence p,a // p,a & b,a // c,a by DIRAF:4,5; end; now assume p,a // a,b & p,c // c,a; then p,c // p,a by ANALOAF:def 5; hence p,a // p,c & b,a // c,c by DIRAF:5,7; end; hence thesis by A16,A17,A18,A19,DIRAF:9; end; now assume p=e2; then b,a // p,a by A7,A8,A9,DIRAF:6; then A20: a,b // a,p by DIRAF:5; A21: now assume a,b // b,p; then a,b // b,p & a,b // a,p by ANALOAF:def 5; then A22: b,p // a,p or a=b by ANALOAF:def 5; now assume b,p // a,p; then a,p // c,p by A2,A3,ANALOAF:def 5; hence p,a // p,c & b,a // c,c by DIRAF:5,7; end; hence thesis by A22,DIRAF:4; end; now assume a,p // p,b; then a,p // p,b & a,p // a,b by ANALOAF:def 5; then a,b // p,b by A6,ANALOAF:def 5; then b,a // b,p by DIRAF:5; hence p,a // p,p & b,a // c,p by A2,A3,DIRAF:6,7; end; hence thesis by A20,A21,DIRAF:9; end; hence thesis by A10,A14; end; hence thesis by A4,A5; end; theorem Th26: Mid p,c,b implies ex x st Mid p,x,a & b,a // c,x proof assume A1: Mid p,c,b; then A2: p,c // c,b by DIRAF:def 3; A3: p=c implies Mid p,p,a & b,a // c,p by DIRAF:7,14; A4: now assume p=b; then p=c by A1,DIRAF:12; hence Mid p,p,a & b,a // c,p by DIRAF:7,14; end; A5: b=c implies Mid p,a,a & b,a // c,a by DIRAF:4,14; now assume A6: p<>c & p<>b & b<>c; A7: b,p // c,p proof Mid b,c,p by A1,DIRAF:13; then b,c // c,p by DIRAF:def 3; then b,c // c,p & b,c // b,p by ANALOAF:def 5; hence b,p // c,p by A6,ANALOAF:def 5; end; A8: now assume A9: not LIN p,a,b; then p<>b & p,b // p,c by A1,DIRAF:11,37; then consider x such that A10: p,a // p,x and A11: b,a // c,x by Th25; c,x // b,a & p,x // p,a by A10,A11,DIRAF:5; then Mid p,x,a by A1,A6,A9,Th22; hence thesis by A11; end; now assume A12: LIN p,a,b; A13: now assume A14: Mid p,a,b; A15: Mid p,c,a implies Mid p,c,a & b,a // c,c by DIRAF:7; now assume Mid p,a,c; then Mid c,a,p & Mid b,a,p by A14,DIRAF:13; then c,a // a,p & b,a // a,p by DIRAF:def 3; then A16: a,p // c,a & a,p // b,a by DIRAF:5; A17: a=p implies Mid p,p,a & b,a // c,p by A7,DIRAF:14; b,a // c,a implies Mid p,a,a & b,a // c,a by DIRAF:14; hence thesis by A16,A17,ANALOAF:def 5; end; hence thesis by A1,A14,A15,DIRAF:21; end; A18: now assume Mid a,p,b; then Mid b,p,a by DIRAF:13; then b,p // p,a by DIRAF:def 3; then b,p // b,a by ANALOAF:def 5 ; hence Mid p,p,a & b,a // c,p by A6,A7,ANALOAF:def 5,DIRAF:14; end; now assume A19: Mid p,b,a; then p,c // p,b & p,b // b,a by A2,ANALOAF:def 5,DIRAF:def 3; then p,c // b,a by A6,DIRAF:6; then b,a // c,b by A2,A6,ANALOAF:def 5; hence thesis by A19; end; hence thesis by A12,A13,A18,DIRAF:35; end; hence thesis by A8; end; hence thesis by A3,A4,A5; end; theorem Th27: p<>b & Mid p,b,c implies ex x st Mid p,a,x & b,a // c,x proof assume that A1: p<>b and A2: Mid p,b,c; A3: p,b // b,c by A2,DIRAF:def 3; then A4: p,b // p,c by ANALOAF:def 5; A5: now assume A6: not LIN p,a,b; consider x such that A7: p,a // p,x & b,a // c,x by A1,A4,Th25; A8: p<>c by A1,A2,DIRAF:12; A9: p<>x proof assume p=x; then b,a // c,p & p,b // p,c by A2,A7,DIRAF:11; then b,a // c,p & c,p // b,p by DIRAF:5; then b,a // b,p by A8,DIRAF:6; then Mid b,a,p or Mid b,p,a by DIRAF:11; then LIN b,a,p or LIN b,p,a by DIRAF:34; hence contradiction by A6,DIRAF:36; end; not LIN p,x,c proof assume A10: LIN p,x,c; Mid p,a,x or Mid p,x,a by A7,DIRAF:11; then LIN p,a,x or LIN p,x,a by DIRAF:34; then LIN p,x,a & LIN p,x,p by DIRAF:36,37; then LIN p,c,a & LIN p,b,c by A2,A9,A10,DIRAF:34,38; then LIN p,c,a & LIN p,c,b & LIN p,c,p by DIRAF:36,37; hence contradiction by A6,A8,DIRAF:38; end; then Mid p,a,x by A1,A2,A7,Th22; hence thesis by A7; end; A11: now assume A12: LIN p,a,b & c <>b; A13: now assume Mid p,a,b; then Mid a,b,c by A2,DIRAF:15; then Mid c,b,a by DIRAF:13; then c,b // b,a by DIRAF:def 3; then c,b // b,a & c,b // c,a by ANALOAF:def 5; hence Mid p,a,a & b,a // c,a by A12,ANALOAF:def 5,DIRAF:14; end; A14: now assume Mid a,p,b; then Mid a,b,c by A1,A2,DIRAF:16; then Mid c,b,a by DIRAF:13; then c,b // b,a by DIRAF:def 3; then c,b // b,a & c,b // c,a by ANALOAF:def 5; hence Mid p,a,a & b,a // c,a by A12,ANALOAF:def 5,DIRAF:14; end; now assume Mid p,b,a; then A15: p,b // b,a by DIRAF:def 3; then A16: b,a // b,c by A1,A3,ANALOAF:def 5; A17: now assume A18: b,a // a,c; p,b // p,a by A15,ANALOAF:def 5; then A19: b,a // p,a by A1,A15,ANALOAF:def 5; A20: now assume a=b; then Mid p,a,a & b,a // c,a by DIRAF:7,14; hence thesis; end; now assume p,a // a,c; then Mid p,a,c & b,a // c,c by DIRAF:7,def 3; hence thesis; end; hence thesis by A18,A19,A20,ANALOAF:def 5; end; now assume b,c // c,a; then b,c // c,a & b,c // b,a by ANALOAF:def 5; hence Mid p,a,a & b,a // c,a by A12,ANALOAF:def 5,DIRAF:14; end; hence thesis by A16,A17,ANALOAF:def 5; end; hence thesis by A12,A13,A14,DIRAF:35; end; c =b implies Mid p,a,a & b,a // c,a by DIRAF:4,14; hence thesis by A5,A11; end; theorem Th28: not LIN p,a,b & Mid p,c,b implies ex x st Mid p,x,a & a,b // x,c proof assume that A1: not LIN p,a,b and A2: Mid p,c,b; A3: p<>a & p<>b & a<>b by A1,DIRAF:37; A4: LIN p,c,b by A2,DIRAF:34; A5: Mid b,c,p by A2,DIRAF:13; then A6: b,c // c,p by DIRAF:def 3; A7: now assume A8: b<>c & a<>c & p<>c; consider e1 such that A9: Mid b,e1,a & p,a // c,e1 by A5,Th26; consider e2 such that A10: a,c // c,e2 & a,b // p,e2 by A6,A8,ANALOAF:def 5; consider e3 such that A11: p,c // c,e3 & p,a // e2,e3 by A8,A10,ANALOAF:def 5; consider e4 such that A12: e1,c // c,e4 & e1,b // p,e4 by A6,A8,ANALOAF:def 5; consider e5 such that A13: e4,e2 // c,e5 & e4,c // e2,e5 & e2<>e5 by ANALOAF:def 5; A14: e3,c // c,p by A11,DIRAF:5; A15: not LIN p,c,a proof assume LIN p,c,a; then LIN p,c,a & LIN p,c,p by DIRAF:37; hence contradiction by A1,A4,A8,DIRAF:38; end; A16: not LIN a,b,c proof assume LIN a,b,c; then LIN b,c,a & LIN b,c,p & LIN b,c,b by A4,DIRAF:36,37; hence contradiction by A1,A8,DIRAF:38; end; A17: p<>e2 proof assume p=e2; then Mid a,c,p by A10,DIRAF:def 3; then Mid p,c,a by DIRAF:13; hence contradiction by A15,DIRAF:34; end; A18: c <>e2 proof assume A19: c =e2; p,c // c,b by A6,DIRAF:5; then a,b // c,b by A8,A10,A19,DIRAF:6; then b,a // b,c by DIRAF:5; then Mid b,a,c or Mid b,c,a by DIRAF:11; then LIN b,a,c or LIN b,c,a by DIRAF:34; hence contradiction by A16,DIRAF:36; end; A20: c <>e3 proof assume c =e3; then c,e2 // a,p by A11,DIRAF:5; then a,c // a,p by A10,A18,DIRAF:6; then Mid a,c,p or Mid a,p,c by DIRAF:11; then LIN a,c,p or LIN a,p,c by DIRAF:34; hence contradiction by A15,DIRAF:36; end; then consider x such that A21: e5,c // c,x & e5,e3 // p,x by A14,ANALOAF:def 5; A22: p<>e3 by A8,A11,ANALOAF:def 5; A23: not LIN p,e3,e2 proof assume A24: LIN p,e3,e2; p,c // p,e3 by A11,ANALOAF:def 5; then Mid p,c,e3 or Mid p,e3,c by DIRAF:11; then LIN p,c,e3 or LIN p,e3,c by DIRAF:34; then A25: LIN p,e3,c by DIRAF:36; a,c // a,e2 by A10,ANALOAF:def 5; then Mid a,c,e2 or Mid a,e2,c by DIRAF:11; then LIN a,c,e2 or LIN a,e2,c by DIRAF:34; then LIN c,e2,a by DIRAF:36; then A26: LIN p,e3,a by A18,A24,A25,DIRAF:41; p,c // c,b by A2,DIRAF:def 3; then p,c // p,b & p,c // p,e3 by A11,ANALOAF:def 5; then p,b // p,e3 by A8,ANALOAF:def 5; then Mid p,b,e3 or Mid p,e3,b by DIRAF:11; then LIN p,b,e3 or LIN p,e3,b by DIRAF:34; then LIN p,e3,b & LIN p,e3,p by DIRAF:36,37; hence contradiction by A1,A22,A26,DIRAF:38; end; A27: c <>e1 proof assume c =e1; then LIN b,c,a by A9,DIRAF:34; hence contradiction by A16,DIRAF:36; end; A28: e4,c // e2,e3 proof A29: c,e1 // e2,e3 by A3,A9,A11,ANALOAF:def 5; Mid e1,c,e4 by A12,DIRAF:def 3; then Mid e4,c,e1 by DIRAF:13; then e4,c // c,e1 by DIRAF:def 3; hence e4,c // e2,e3 by A27,A29,DIRAF:6; end; A30: b<>e1 proof assume b=e1; then p,a // c,b & p,c // c,b by A2,A9,DIRAF:def 3; then p,a // c,b & c,b // p,c by DIRAF:5; then p,a // p,c by A8,DIRAF:6; then Mid p,a,c or Mid p,c,a by DIRAF:11; then LIN p,a,c or LIN p,c,a by DIRAF:34; hence contradiction by A15,DIRAF:36; end; A31: p<>e4 proof assume p=e4; then c,e1 // p,c by A12,DIRAF:5; then p,a // p,c by A9,A27,DIRAF:6; then Mid p,a,c or Mid p,c,a by DIRAF:11; then LIN p,a,c or LIN p,c,a by DIRAF:34; hence contradiction by A15,DIRAF:36; end; A32: e2<>e4 proof assume e2=e4; then c,e2 // e1,c by A12,DIRAF:5; then a,c // e1,c by A10,A18,DIRAF:6; then c,e1 // c,a by DIRAF:5; then p,a // c,a by A9,A27,DIRAF:6; then a,p // a,c by DIRAF:5; then Mid a,p,c or Mid a,c,p by DIRAF:11; then LIN a,p,c or LIN a,c,p by DIRAF:34; hence contradiction by A15,DIRAF:36; end; A33: c <>e4 proof assume c =e4; then e1,b // p,c & p,c // c,b by A2,A12,DIRAF:def 3; then e1,b // c,b by A8,DIRAF:6; then b,e1 // b,c by DIRAF:5; then Mid b,e1,c or Mid b,c,e1 by DIRAF:11; then LIN b,e1,c or LIN b,c,e1 by DIRAF:34; then LIN b,e1,c & LIN b,e1,a & LIN b,e1,b by A9,DIRAF:34,36,37; hence contradiction by A16,A30,DIRAF:38; end; A34: c <>e5 proof assume c =e5; then c,e4 // c,e2 by A13,DIRAF:5; then e1,c // c,e2 by A12,A33,DIRAF:6; then c,e2 // e1,c by DIRAF:5; then a,c // e1,c by A10,A18,DIRAF:6; then c,e1 // c,a by DIRAF:5; then p,a // c,a by A9,A27,DIRAF:6; then a,p // a,c by DIRAF:5; then Mid a,p,c or Mid a,c,p by DIRAF:11; then LIN a,p,c or LIN a,c,p by DIRAF:34; hence contradiction by A15,DIRAF:36; end; A35: a<>e1 proof assume a=e1; then a,p // a,c by A9,DIRAF:5; then Mid a,p,c or Mid a,c,p by DIRAF:11; then LIN a,p,c or LIN a,c,p by DIRAF:34; hence contradiction by A15,DIRAF:36; end; Mid a,e1,b by A9,DIRAF:13; then a,e1 // e1,b by DIRAF:def 3; then a,e1 // e1,b & a,e1 // a,b by ANALOAF:def 5; then a,b // e1,b by A35,ANALOAF:def 5; then e1,b // p,e2 by A3,A10,ANALOAF:def 5; then A36: p,e4 // p,e2 by A12,A30,ANALOAF:def 5; Mid p,c,e3 by A11,DIRAF:def 3; then Mid p,e4,e2 by A23,A28,A31,A36,Th23; then p,e4 // e4,e2 by DIRAF:def 3; then p,e4 // e4,e2 & p,e4 // p,e2 by ANALOAF:def 5; then A37: p,e2 // e4,e2 by A31,ANALOAF:def 5; then A38: a,b // e4,e2 by A10,A17,DIRAF:6; then A39: a,b // c,e5 by A13,A32,DIRAF:6; a,b // c,e5 & c,e5 // x,c by A13,A21,A32,A38,DIRAF:5,6; then A40: a,b // x,c by A34,DIRAF:6; A41: e2<>e3 proof assume e2=e3; then c,e2 // p,c by A11,DIRAF:5; then a,c // p,c by A10,A18,DIRAF:6; then c,a // c,p by DIRAF:5; then Mid c,a,p or Mid c,p,a by DIRAF:11; then LIN c,a,p or LIN c,p,a by DIRAF:34; hence contradiction by A15,DIRAF:36; end; A42: e5<>e3 proof assume e5=e3; then c,e3 // a,b by A39,DIRAF:5; then p,c // a,b by A11,A20,DIRAF:6; then c,p // b,a by DIRAF:5; then b,c // b,a by A6,A8,DIRAF:6; then Mid b,c,a or Mid b,a,c by DIRAF:11; then LIN b,c,a or LIN b,a,c by DIRAF:34; hence contradiction by A16,DIRAF:36; end; A43: e3,p // e3,c proof Mid p,c,e3 by A11,DIRAF:def 3; then Mid e3,c,p by DIRAF:13; then e3,c // c,p by DIRAF:def 3; then e3,c // e3,p by ANALOAF:def 5; hence e3,p // e3,c by DIRAF:5; end; A44: p,e2 // c,e5 by A13,A32,A37,DIRAF:6; A45: LIN e2,e3,e5 proof c,e1 // e4,c by A12,DIRAF:5; then c,e1 // e2,e5 by A13,A33,DIRAF:6; then p,a // e2,e5 by A9,A27,DIRAF:6; then e2,e3 // e2,e5 by A3,A11,ANALOAF:def 5; then Mid e2,e3,e5 or Mid e2,e5,e3 by DIRAF:11; then LIN e2,e3,e5 or LIN e2,e5,e3 by DIRAF:34; hence LIN e2,e3,e5 by DIRAF:36; end; A46: not LIN e3,e2,p by A23,DIRAF:36; then not Mid e2,e3,e5 by A42,A43,A44,A45,Th24; then Mid e3,e2,e5 or Mid e2,e5,e3 by A45,DIRAF:35; then e3,e2 // e2,e5 or Mid e3,e5,e2 by DIRAF:13,def 3; then e3,e2 // e3,e5 or e3,e5 // e5,e2 by ANALOAF:def 5,DIRAF:def 3; then e3,e5 // e3,e2 & c,e5 // p,e2 & Mid p,c,e3 by A11,A44,ANALOAF:def 5,DIRAF:5,def 3; then e3,e5 // e3,e2 & c,e5 // p,e2 & Mid e3,c,p by DIRAF:13; then Mid e3,e5,e2 by A20,A46,Th22; then Mid e2,e5,e3 by DIRAF:13; then e2,e5 // e5,e3 by DIRAF:def 3; then e2,e5 // e5,e3 & e2,e5 // e2,e3 by ANALOAF:def 5; then e2,e3 // e5,e3 by A13,ANALOAF:def 5; then p,a // e5,e3 by A11,A41,DIRAF:6; then p,a // p,x by A21,A42,DIRAF:6; then p,x // p,a & c,x // b,a by A40,DIRAF:5; then Mid p,x,a by A1,A2,A8,Th22; hence thesis by A40; end; A47: b=c implies a,b // a,c & Mid p,a,a by DIRAF:4,14; A48: a=c implies a,b // a,c & Mid p,a,a by DIRAF:7,14; p=c implies a,b // c,c & Mid p,c,a by DIRAF:7,14; hence thesis by A7,A47,A48; end; theorem ex x st a,x // b,c & a,b // x,c proof A1: now assume A2: LIN a,b,c; A3: Mid a,b,c implies a,b // b,c & a,b // b,c by DIRAF:def 3; A4: now assume Mid b,a,c; then Mid c,a,b by DIRAF:13; then c,a // a,b by DIRAF:def 3; then c,a // c,b by ANALOAF:def 5; hence a,c // b,c & a,b // c,c by DIRAF:5,7; end; now assume Mid a,c,b; then a,c // c,b by DIRAF:def 3; then a,c // a,b by ANALOAF:def 5; hence a,a // b,c & a,b // a,c by DIRAF:5,7; end; hence thesis by A2,A3,A4,DIRAF:35; end; now assume A5: not LIN a,b,c; then A6: a<>b & a<>c & b<>c by DIRAF:37; consider e1 such that A7: Mid c,a,e1 & a<>e1 by DIRAF:17; A8: c,a // a,e1 by A7,DIRAF:def 3; then consider e2 such that A9: b,a // a,e2 & b,c // e1,e2 by A6,ANALOAF:def 5; consider e3 such that A10: Mid b,c,e3 & c <>e3 by DIRAF:17; A11: b,c // c,e3 by A10,DIRAF:def 3; then consider e4 such that A12: a,c // c,e4 & a,b // e3,e4 by A6,ANALOAF:def 5; Mid a,c,e4 by A12,DIRAF:def 3; then A13:Mid e4,c,a by DIRAF:13; then e4,c // c,a & c,a // c,e1 by A8,ANALOAF:def 5,DIRAF:def 3; then e4,c // c,e1 by A6,DIRAF:6; then A14: Mid e4,c,e1 by DIRAF:def 3; then A15: Mid e1,c,e4 by DIRAF:13; A16: e4<>c proof assume e4=c; then a,b // e3,c & e3,c // c,b by A11,A12,DIRAF:5; then a,b // c,b by A10,DIRAF:6; then b,a // b,c by DIRAF:5; then Mid b,a,c or Mid b,c,a by DIRAF:11; then LIN b,a,c or LIN b,c,a by DIRAF:34; hence contradiction by A5,DIRAF:36; end; then consider e5 such that A17: Mid e4,e3,e5 & c,e3 // e1,e5 by A14,Th27; A18: e4<>e3 proof assume e4=e3; then Mid a,c,e3 by A12,DIRAF:def 3; then Mid e3,c,a by DIRAF:13; then LIN e3,c,a & Mid e3,c,b by A10,DIRAF:13,34; then LIN e3,c,a & LIN e3,c,b & LIN e3,c,c by DIRAF:34,37; hence contradiction by A5,A10,DIRAF:38; end; then A19: e4<>e5 by A17,DIRAF:12; A20: e1<>e4 by A14,A16,DIRAF:12; A21: not LIN e4,c,e3 proof assume LIN e4,c,e3; then LIN e4,c,e3 & LIN e4,c,a & LIN e4,c,c by A13,DIRAF:34,37; then LIN c,e3,a & LIN b,c,e3 by A10,A16,DIRAF:34,38; then LIN c,e3,a & LIN c,e3,b & LIN c,e3,c by DIRAF:36,37; hence contradiction by A5,A10,DIRAF:38; end; A22: not LIN e1,e4,e3 proof assume LIN e1,e4,e3; then LIN e1,e4,e3 & LIN e4,c,e1 by A14,DIRAF:34; then LIN e4,e1,e3 & LIN e4,e1,c & LIN e4,e1,e4 by DIRAF:36,37; hence contradiction by A20,A21,DIRAF:38; end; A23: not LIN e1,e5,e4 proof assume LIN e1,e5,e4; then LIN e5,e4,e1 & LIN e4,e3,e5 by A17,DIRAF:34,36; then LIN e5,e4,e1 & LIN e5,e4,e3 & LIN e5,e4,e4 by DIRAF:36,37; hence contradiction by A19,A22,DIRAF:38; end; then consider e6 such that A24: Mid e1,e6,e5 & e5,e4 // e6,c by A15,Th28; consider x such that A25: Mid c,x,e6 & e1,e6 // a,x by A7,Th26; A26: e1<>e5 by A23,DIRAF:37; A27: c <>e1 by A7,DIRAF:12; A28: not LIN c,e1,b proof assume LIN c,e1,b; then LIN c,e1,b & LIN c,a,e1 by A7,DIRAF:34; then LIN c,e1,b & LIN c,e1,a & LIN c,e1,c by DIRAF:36,37; hence contradiction by A5,A27,DIRAF:38; end; A29: e5<>e3 proof assume e5=e3; then e3,c // e3,e1 by A17,DIRAF:5; then Mid e3,c,e1 or Mid e3,e1,c by DIRAF:11; then LIN e3,c,e1 or LIN e3,e1,c by DIRAF:34; then LIN e3,c,e1 & Mid e3,c,b by A10,DIRAF:13,36; then LIN e3,c,e1 & LIN e3,c,b & LIN e3,c,c by DIRAF:34,37; hence contradiction by A10,A28,DIRAF:38; end; A30: e1<>e6 proof assume A31: e1=e6; Mid e5,e3,e4 by A17,DIRAF:13; then e5,e3 // e3,e4 by DIRAF:def 3; then e5,e3 // e3,e4 & e5,e3 // e5,e4 by ANALOAF:def 5; then e5,e4 // e3,e4 by A29,ANALOAF:def 5; then e3,e4 // e1,c by A19,A24,A31,ANALOAF:def 5; then a,b // e1,c & Mid e1,a,c by A7,A12,A18,DIRAF:6,13; then a,b // e1,c & e1,a // a,c by DIRAF:def 3; then a,b // e1,c & e1,a // a,c & e1,a // e1,c by ANALOAF:def 5; then a,b // e1,c & e1,c // a,c by A7,ANALOAF:def 5; then a,b // a,c by A27,DIRAF:6; then a,b // b,c or a,c // c,b by DIRAF:9; then Mid a,b,c or Mid a,c,b by DIRAF:def 3; then LIN a,b,c or LIN a,c,b by DIRAF:34; hence contradiction by A5,DIRAF:36; end; e1,e6 // e6,e5 by A24,DIRAF:def 3; then e1,e6 // e1,e5 by ANALOAF:def 5 ; then e1,e5 // a,x by A25,A30,ANALOAF:def 5; then c,e3 // a,x & b,c // c,e3 by A10,A17,A26,DIRAF:6,def 3; then c,e3 // a,x & c,e3 // b,c by DIRAF:5; then A32: a,x // b,c by A10,ANALOAF:def 5; Mid e5,e3,e4 by A17,DIRAF:13; then e5,e3 // e3,e4 by DIRAF:def 3; then e5,e3 // e3,e4 & e5,e3 // e5,e4 by ANALOAF:def 5; then e3,e4 // e5,e4 by A29,ANALOAF:def 5; then a,b // e5,e4 by A12,A18,DIRAF:6; then A33: a,b // e6,c by A19,A24,DIRAF:6; A34: e6<>c proof assume e6=c; then x=c by A25,DIRAF:12; then c,a // c,b by A32,DIRAF:5; then Mid c,a,b or Mid c,b,a by DIRAF:11; then LIN c,a,b or LIN c,b,a by DIRAF:34; hence contradiction by A5,DIRAF:36; end; A35: a<>e2 proof assume a=e2; then b,c // e1,a & e1,a // a,c by A8,A9,DIRAF:5; then b,c // a,c by A7,DIRAF:6; then c,b // c,a by DIRAF:5; then Mid c,b,a or Mid c,a,b by DIRAF:11; then LIN c,b,a or LIN c,a,b by DIRAF:34; hence contradiction by A5,DIRAF:36; end; A36: e6<>x proof assume e6=x; then e6,e1 // e6,a by A25,DIRAF:5; then Mid e6,e1,a or Mid e6,a,e1 by DIRAF:11; then LIN e6,e1,a or LIN e6,a,e1 by DIRAF:34; then LIN e6,e1,a & LIN e1,e6,e5 by A24,DIRAF:34,36; then LIN e6,e1,a & LIN e6,e1,e5 & LIN e6,e1,e1 by DIRAF:36,37; then A37: LIN e1,e5,a by A30,DIRAF:38; b,c // e1,e5 by A10,A11,A17,DIRAF:6; then e1,e2 // e1,e5 by A6,A9,ANALOAF:def 5; then Mid e1,e2,e5 or Mid e1,e5,e2 by DIRAF:11; then LIN e1,e2,e5 or LIN e1,e5,e2 by DIRAF:34; then LIN e1,e5,e2 & LIN e1,e5,e1 by DIRAF:36,37; then LIN a,e1,e2 & LIN c,a,e1 by A7,A26,A37,DIRAF:34,38; then LIN a,e1,e2 & LIN a,e1,c & LIN a,e1,a by DIRAF:36,37; then LIN a,e2,c & Mid b,a,e2 by A7,A9,DIRAF:38,def 3; then LIN a,e2,c & LIN b,a,e2 by DIRAF:34; then LIN a,e2,c & LIN a,e2,b & LIN a,e2,a by DIRAF:36,37; hence contradiction by A5,A35,DIRAF:38; end; Mid e6,x,c by A25,DIRAF:13; then e6,x // x,c by DIRAF:def 3; then e6,x // x,c & e6,x // e6,c by ANALOAF:def 5; then e6,c // x,c by A36,ANALOAF:def 5; then a,b // x,c by A33,A34,DIRAF:6; hence thesis by A32; end; hence thesis by A1; end; theorem Th30: a,b // c,d & not LIN a,b,c implies ex x st Mid a,x,d & Mid b,x,c proof assume A1: a,b // c,d & not LIN a,b,c; A2: now assume A3: c =d; take x=c; thus Mid a,x,d & Mid b,x,c by A3,DIRAF:14; end; now assume A4: c <>d; consider e1 such that A5: a,b // d,e1 & a,d // b,e1 & b<>e1 by ANALOAF:def 5; consider e2 such that A6: c,d // b,e2 & c,b // d,e2 & d<>e2 by ANALOAF:def 5; A7: a<>b & b<>c by A1,DIRAF:37; then c,d // d,e1 by A1,A5,ANALOAF:def 5 ; then A8: Mid c,d,e1 by DIRAF:def 3; a,b // b,e2 by A1,A4,A6,DIRAF:6; then A9: Mid a,b,e2 by DIRAF:def 3; A10: c <>e1 proof assume c =e1; then c,d // d,c by A1,A5,A7,ANALOAF:def 5; hence contradiction by A4,ANALOAF:def 5; end; A11: a<>e2 proof assume a=e2; then a,b // b,a by A1,A4,A6,DIRAF:6; hence contradiction by A7,ANALOAF:def 5; end; A12: a<>d proof assume a=d; then b,a // a,c by A1,DIRAF:5; then Mid b,a,c by DIRAF:def 3; then LIN b,a,c by DIRAF:34; hence contradiction by A1,DIRAF:36; end; A13: not LIN c,d,b proof assume LIN c,d,b; then c,d '||' c,b by DIRAF:def 5; then A14: c,d // c,b or c,d // b,c by DIRAF:def 4; now assume c,d // c,b; then a,b // c,b by A1,A4,DIRAF:6; then b,a // b,c by DIRAF:5; then Mid b,a,c or Mid b,c,a by DIRAF:11; then LIN b,a,c or LIN b,c,a by DIRAF:34; hence contradiction by A1,DIRAF:36; end; then a,b // b,c by A1,A4,A14,DIRAF:6; then Mid a,b,c by DIRAF:def 3; hence contradiction by A1,DIRAF:34; end; A15: not LIN a,b,d proof assume A16: LIN a,b,d; then A17: a,b '||' a,d by DIRAF:def 5; A18: now assume a,b // a,d; then c,d // a,d by A1,A7,ANALOAF:def 5; then d,c // d,a by DIRAF:5; then d,c '||' d,a by DIRAF:def 4; hence LIN d,c,a by DIRAF:def 5; end; now assume a,b // d,a; then c,d // d,a by A1,A7,ANALOAF:def 5; then Mid c,d,a by DIRAF:def 3; then LIN c,d,a by DIRAF:34; hence LIN d,c,a by DIRAF:36; end; then LIN d,a,a & LIN d,a,c & LIN d,a,b by A16,A17,A18,DIRAF:36,37,def 4; hence contradiction by A1,A12,DIRAF:38; end; A19: not LIN c,b,e1 proof assume LIN c,b,e1; then LIN c,e1,b & LIN c,d,e1 by A8,DIRAF:34,36; then LIN c,e1,b & LIN c,e1,d & LIN c,e1,c by DIRAF:36,37; hence contradiction by A10,A13,DIRAF:38; end; A20: not LIN a,d,e2 proof assume LIN a,d,e2; then LIN a,e2,d & LIN a,b,e2 by A9,DIRAF:34,36; then LIN a,e2,d & LIN a,e2,b & LIN a,e2,a by DIRAF:36,37; hence contradiction by A11,A15,DIRAF:38; end; consider x such that A21: Mid c,x,b & b,e1 // x,d by A8,A19,Th28; consider y such that A22: Mid a,y,d & d,e2 // y,b by A9,A20,Th28; c,b // y,b by A6,A22,DIRAF:6; then b,c // b,y by DIRAF:5; then Mid b,c,y or Mid b,y,c by DIRAF:11; then LIN b,c,y or LIN b,y,c by DIRAF:34; then A23: LIN b,c,y by DIRAF:36; a,d // x,d by A5,A21,DIRAF:6; then d,a // d,x by DIRAF:5; then Mid d,a,x or Mid d,x,a by DIRAF:11; then LIN d,a,x or LIN d,x,a by DIRAF:34; then A24: LIN d,a,x by DIRAF:36; A25: LIN c,x,b by A21,DIRAF:34; then A26: LIN b,c,x by DIRAF:36; LIN b,c,x & LIN b,c,b by A25,DIRAF:36,37; then A27: LIN x,y,b by A7,A23,DIRAF:38; LIN a,y,d by A22,DIRAF:34; then LIN d,a,y & LIN d,a,a by DIRAF:36,37; then A28: LIN x,y,a by A12,A24,DIRAF:38; LIN b,c,c by DIRAF:37; then LIN x,y,c by A7,A23,A26,DIRAF:38; then Mid a,x,d & Mid b,x,c by A1,A21,A22,A27,A28,DIRAF:13,38; hence thesis; end; hence thesis by A2; end; canceled; theorem OAS satisfies_Fano proof let a,b,c,d; assume a,b // c,d & a,c // b,d & not LIN a,b,c; hence thesis by Th30; end; theorem a,b '||' c,d & a,c '||' b,d & not LIN a,b,c implies ex x st LIN x,a,d & LIN x,b,c proof assume A1: a,b '||' c,d & a,c '||' b,d & not LIN a,b,c; then a,b // c,d & a,c // b,d by Th21; then consider x such that A2: Mid a,x,d & Mid b,x,c by A1,Th30; LIN a,x,d & LIN b,x,c by A2,DIRAF:34; then LIN x,a,d & LIN x,b,c by DIRAF:36; hence thesis; end; theorem a,b '||' c,d & a,c '||' b,d & not LIN a,b,c & LIN p,a,d & LIN p,b,c implies not LIN p,a,b proof assume A1: a,b '||' c,d & a,c '||' b,d & not LIN a,b,c & LIN p,a,d & LIN p,b,c; assume A2: LIN p,a,b; p<>a & LIN p,a,a by A1,DIRAF:37; then a<>b & LIN a,b,d & a,b '||' d,c by A1,A2,DIRAF:27,38; hence contradiction by A1,DIRAF:39; end; theorem Th35: Mid a,b,d & Mid b,x,c & not LIN a,b,c implies ex y st Mid a,y,c & Mid y,x,d proof assume A1: Mid a,b,d & Mid b,x,c & not LIN a,b,c; then A2: Mid d,b,a & Mid c,x,b by DIRAF:13; A3: now assume A4: b<>d & x<>b; d,b // b,a by A2,DIRAF:def 3; then consider e1 such that A5: x,b // b,e1 & x,d // a,e1 by A4,ANALOAF:def 5; A6: Mid x,b,e1 by A5,DIRAF:def 3; then Mid e1,b,x by DIRAF:13; then A7: Mid e1,x,c by A1,A4,DIRAF:16; then A8: Mid c,x,e1 by DIRAF:13; A9: c <>e1 proof assume c =e1; then Mid x,b,x by A6,A7,DIRAF:12; hence contradiction by A4,DIRAF:12; end; A10: x<>e1 by A4,A6,DIRAF:12; A11: not LIN c,a,e1 proof assume LIN c,a,e1; then A12: LIN c,e1,a by DIRAF:36; LIN c,x,e1 by A8,DIRAF:34; then LIN c,e1,x & LIN x,b,e1 by A6,DIRAF:34,36; then LIN c,e1,x & LIN c,e1,e1 & LIN x,e1,b by DIRAF:36,37; then LIN c,e1,b & LIN c,e1,c by A10,DIRAF:37,41; hence contradiction by A1,A9,A12,DIRAF:38; end; then consider y such that A13: Mid c,y,a & a,e1 // y,x by A8,Th28; a<>e1 by A11,DIRAF:37; then x,d // y,x by A5,A13,DIRAF:6; then d,x // x,y by DIRAF:5; then Mid d,x,y by DIRAF:def 3; then Mid a,y,c & Mid y,x,d by A13,DIRAF:13; hence thesis; end; A14: now assume A15: b<>d & x=b; take y=a; thus Mid a,y,c & Mid y,x,d by A1,A15,DIRAF:14; end; now assume A16: b=d; take y=c; thus Mid a,y,c & Mid d,x,y by A1,A16,DIRAF:14; thus Mid a,y,c & Mid y,x,d by A1,A16,DIRAF:13,14; end; hence thesis by A3,A14; end; theorem OAS satisfies_Ext_Bet_Pasch proof let a,b,c,d,x,y; assume Mid a,b,d & Mid b,x,c & not LIN a,b,c; hence thesis by Th35; end; theorem Th37: Mid a,b,d & Mid a,x,c & not LIN a,b,c implies ex y st Mid b,y,c & Mid x,y,d proof assume that A1: Mid a,b,d and A2: Mid a,x,c and A3: not LIN a,b,c; A4: a<>b & a<>c & b<>c by A3,DIRAF:37; A5: now assume A6: b<>d & x<>c & a<>x; then consider e1 such that A7: Mid a,d,e1 and A8: x,d // c,e1 by A2,Th27; A9: Mid d,b,a & Mid e1,d,a by A1,A7,DIRAF:13; then A10: LIN d,b,a & LIN e1,d,a by DIRAF:34; A11: e1<>b by A6,A9,DIRAF:18; Mid b,d,e1 by A1,A7,DIRAF:15; then Mid e1,d,b by DIRAF:13; then Mid e1,b,a by A9,DIRAF:16; then e1,b // b,a by DIRAF:def 3; then consider e2 such that A12: c,b // b,e2 and A13: c,e1 // a,e2 by A11,ANALOAF:def 5; A14: Mid c,b,e2 by A12,DIRAF:def 3; then A15: LIN c,b,e2 by DIRAF:34; A16: a<>d by A1,A6,DIRAF:12; A17: c <>e1 proof assume c =e1; then LIN d,a,b & LIN d,a,c & LIN d,a,a by A10,DIRAF:36,37; hence contradiction by A3,A16,DIRAF:38; end; A18: a<>e2 proof assume a=e2; then Mid c,b,a by A12,DIRAF:def 3; then Mid a,b,c by DIRAF:13; hence contradiction by A3,DIRAF:34; end; Mid c,x,a by A2,DIRAF:13; then consider y such that A19: Mid c,y,e2 and A20: a,e2 // x,y by Th26; A21: not LIN a,x,b proof assume LIN a,x,b; then LIN a,x,b & LIN a,x,c & LIN a,x,a by A2,DIRAF:34,37; hence contradiction by A3,A6,DIRAF:38; end; A22: not LIN x,d,a proof assume LIN x,d,a; then LIN d,a,x & LIN d,a,b & LIN d,a,a by A10,DIRAF:36,37; hence contradiction by A16,A21,DIRAF:38; end; then A23: x<>d by DIRAF:37; A24: c <>e2 by A4,A12,ANALOAF:def 5; x,d // a,e2 by A8,A13,A17,DIRAF:6; then x,d // x,y by A18,A20,DIRAF:6; then A25: Mid x,d,y or Mid x,y,d by DIRAF:11; A26: now assume A27: Mid x,d,y; then consider c' such that A28: Mid x,c',a and A29: Mid c',b,y by A9,A22,Th35; A30: b<>y proof assume b=y; then LIN x,d,b by A27,DIRAF:34; then LIN d,b,x & LIN a,x,c by A2,DIRAF:34,36; then LIN d,b,c & LIN d,b,b by A6,A10,DIRAF:37,41; hence contradiction by A3,A6,A10,DIRAF:38; end; LIN a,x,c & LIN x,c',a by A2,A28,DIRAF:34; then LIN x,a,c & LIN x,a,c' & LIN x,a,a by DIRAF:36,37; then A31: LIN c,c',a by A6,DIRAF:38; LIN c,y,e2 & LIN c,b,e2 by A14,A19,DIRAF:34; then LIN c,e2,y & LIN c,e2,b & LIN c,e2,c by DIRAF:36,37; then LIN b,y,c & LIN c',b,y by A24,A29,DIRAF:34,38; then LIN b,y,c & LIN b,y,c' & LIN b,y,b by DIRAF:36,37; then LIN c,c',b & LIN c,c',c by A30,DIRAF:38; then Mid x,c,a & Mid c,x,a by A2,A3,A28,A31,DIRAF:13,38; hence contradiction by A6,DIRAF:18; end; then A32: Mid d,y,x by A25,DIRAF:13; A33: Mid c,b,y or Mid c,y,b by A14,A19,DIRAF:21; now assume A34: not Mid c,y,b; then A35: y<>b by DIRAF:14; Mid b,y,e2 by A19,A33,A34,DIRAF:15; then consider z such that A36: Mid b,d,z & y,d // e2,z by A35,Th27; A37: y<>d proof assume y=d; then LIN c,d,e2 by A19,DIRAF:34; then A38: LIN c,e2,d & LIN c,e2,b by A15,DIRAF:36; then LIN c,e2,a & LIN c,e2,c by A6,A10,DIRAF:37,41; hence contradiction by A3,A24,A38,DIRAF:38; end; d,y // y,x by A32,DIRAF:def 3; then d,y // d,x by ANALOAF:def 5; then y,d // x,d by DIRAF:5; then y,d // c,e1 by A8,A23,DIRAF:6; then c,e1 // e2,z by A36,A37,ANALOAF:def 5; then a,e2 // e2,z by A13,A17,ANALOAF:def 5; then Mid a,e2,z by DIRAF:def 3; then LIN a,e2,z by DIRAF:34; then A39: LIN a,z,e2 by DIRAF:36; A40: b<>e2 proof assume b=e2; then c,e1 // a,b & c,e1 // x,d by A8,A13,DIRAF:5; then a,b // x,d & a,b // b,d by A1,A17,ANALOAF:def 5,DIRAF:def 3; then x,d // b,d by A4,ANALOAF:def 5; then d,x // d,b by DIRAF:5; then Mid d,x,b or Mid d,b,x by DIRAF:11; then LIN d,x,b or LIN d,b,x by DIRAF:34; then LIN d,b,x & LIN d,b,b by DIRAF:36,37; then LIN a,x,b & LIN a,x,c & LIN a,x,a by A2,A6,A10,DIRAF:34,38; hence contradiction by A3,A6,DIRAF:38; end; LIN b,d,z & LIN b,d,a & LIN b,d,b by A10,A36,DIRAF:34,36,37; then A41: LIN a,z,b & LIN a,z,a by A6,DIRAF:38; now assume a=z; then Mid b,d,a & Mid d,b,a by A1,A36,DIRAF:13; hence contradiction by A6,DIRAF:18; end; then A42: LIN a,e2,b & LIN a,e2,e2 & LIN b,e2,c by A15,A39,A41,DIRAF:36,38; then LIN a,e2,c & LIN a,e2,a by A40,DIRAF:37,41; hence contradiction by A3,A18,A42,DIRAF:38; end; then Mid b,y,c by DIRAF:13; hence thesis by A25,A26; end; A43: b=d implies Mid b,d,c & Mid x,d,d by DIRAF:14; A44: x=c implies Mid b,c,c & Mid x,c,d by DIRAF:14; a=x implies Mid b,b,c & Mid x,b,d by A1,DIRAF:14; hence thesis by A5,A43,A44; end; theorem OAS satisfies_Int_Bet_Pasch proof let a,b,c,d,x,y; assume Mid a,b,d & Mid a,x,c & not LIN a,b,c; hence thesis by Th37; end; theorem Mid p,a,b & p,a // p',a' & not LIN p,a,p' & LIN p',a',b' & p,p' // a,a' & p,p' // b,b' implies Mid p',a',b' proof assume that A1: Mid p,a,b and A2: p,a // p',a' and A3: not LIN p,a,p' and A4: LIN p',a',b' and A5: p,p' // a,a' and A6: p,p' // b,b'; A7: p<>a & p<>p' & a<>p' by A3,DIRAF:37; A8: LIN p,a,b by A1,DIRAF:34; then A9: LIN p,b,a by DIRAF:36; now assume A10: p'<>a' & a'<>b'; consider x such that A11: Mid p,x,b' and A12: b,b' // a,x by A1,Th26; Mid b',x,p by A11,DIRAF:13; then consider y such that A13: Mid b',y,p' and A14: p,p' // x,y by Th26; A15: LIN b',y,p' & LIN p,x,b' by A11,A13,DIRAF:34; A16: not LIN p,a,a' proof assume LIN p,a,a'; then LIN p,a,a' & p,a '||' a',p' by A2,DIRAF:def 4; hence contradiction by A3,A7,DIRAF:39; end; then A17: a<>a' by DIRAF:37; A18: b<>b' proof assume b=b'; then LIN a',p',b by A4,DIRAF:36; then a',p' '||' a',b by DIRAF:def 5; then a',p' // a',b or a',p' // b,a' by DIRAF:def 4; then p',a' // a',b or p',a' // b,a' by DIRAF:5; then p,a // a',b or p,a // b,a' by A2,A10,DIRAF:6; then p,a '||' b,a' by DIRAF:def 4; hence contradiction by A7,A8,A16,DIRAF:39; end; A19: x<>a proof assume x=a; then LIN p,a,b' & LIN p,a,a & LIN p,a,p by A11,DIRAF:34,37; then A20: LIN b,b',a & LIN b,b',p by A7,A8,DIRAF:38; b,b' // p,p' by A6,DIRAF:5; then b,b' '||' p,p' by DIRAF:def 4; then LIN b,b',p' by A18,A20,DIRAF:39; hence contradiction by A3,A18,A20,DIRAF:38; end; A21: p<>b by A1,A7,DIRAF:12; A22: p'<>b' proof assume A23: p'=b'; then b',p // b',b by A6,DIRAF:5; then Mid b',p,b or Mid b',b,p by DIRAF:11; then LIN b',p,b or LIN b',b,p by DIRAF:34; then LIN p,b,b' & LIN p,b,b & LIN p,b,p by DIRAF:36,37; hence contradiction by A3,A9,A21,A23,DIRAF:38; end; A24: p,p' // a,x by A6,A12,A18,DIRAF:6; then a,x // x,y by A7,A14,ANALOAF:def 5; then a,x // a,y by ANALOAF:def 5; then p,p' // a,y by A19,A24,DIRAF:6; then a,y // a,a' by A5,A7,ANALOAF:def 5; then a,y '||' a,a' by DIRAF:def 4; then LIN a,y,a' by DIRAF:def 5; then A25: LIN y,a',a by DIRAF:36; LIN p',b',y & LIN p',b',a' & LIN p',b',p' by A4,A15,DIRAF:36,37; then LIN y,a',p' & LIN y,a',a' by A22,DIRAF:38; then A26: y=a' or LIN a,a',p' by A25,DIRAF:38; now assume LIN a,a',p'; then LIN a,a',p' & a,a' // p,p' by A5,DIRAF:5; then LIN a,a',p' & a,a' '||' p',p by DIRAF:def 4; then LIN a,a',p by A17,DIRAF:39; hence contradiction by A16,DIRAF:36; end; hence Mid p',a',b' by A13,A26,DIRAF:13; end; hence thesis by DIRAF:14; end;