environ vocabulary ANALOAF, DIRAF, PARSP_1, VECTSP_1, PASCH; notation STRUCT_0, ANALOAF, DIRAF; constructors DIRAF, XBOOLE_0; clusters ZFMISC_1, XBOOLE_0; begin reserve OAS for OAffinSpace; reserve a,a',b,b',c,c',d,d1,d2,e1,e2,e3,e4,e5,e6,p,p',q,r,x,y,z for Element of OAS; definition let OAS; attr OAS is satisfying_Int_Par_Pasch means :: PASCH:def 1 for a,b,c,d,p st not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a holds Mid c,p,d; synonym OAS satisfies_Int_Par_Pasch; end; definition let OAS; attr OAS is satisfying_Ext_Par_Pasch means :: PASCH:def 2 for a,b,c,d,p st Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b holds Mid p,a,d; synonym OAS satisfies_Ext_Par_Pasch; end; definition let OAS; attr OAS is satisfying_Gen_Par_Pasch means :: PASCH:def 3 for a,b,c,a',b',c' st not LIN a,b,a' & a,a' '||' b,b' & a,a' '||' c,c' & Mid a,b,c & LIN a',b',c' holds Mid a',b',c'; synonym OAS satisfies_Gen_Par_Pasch; end; definition let OAS; attr OAS is satisfying_Ext_Bet_Pasch means :: PASCH:def 4 for a,b,c,d,x,y st Mid a,b,d & Mid b,x,c & not LIN a,b,c holds ex y st Mid a,y,c & Mid y,x,d; synonym OAS satisfies_Ext_Bet_Pasch; end; definition let OAS; attr OAS is satisfying_Int_Bet_Pasch means :: PASCH:def 5 for a,b,c,d,x,y st Mid a,b,d & Mid a,x,c & not LIN a,b,c holds ex y st Mid b,y,c & Mid x,y,d; synonym OAS satisfies_Int_Bet_Pasch; end; definition let OAS; attr OAS is Fanoian means :: PASCH:def 6 for a,b,c,d st a,b // c,d & a,c // b,d & not LIN a,b,c ex x st Mid a,x,d & Mid b,x,c; synonym OAS satisfies_Fano; end; canceled 6; theorem :: PASCH:7 b,p // p,c & p<>c & b<>p implies ex d st a,p // p,d & a,b '||' c,d & c <>d & p<>d; theorem :: PASCH:8 p,b // p,c & p<>c & b<>p implies ex d st p,a // p,d & a,b '||' c,d & c <>d; theorem :: PASCH:9 p,b '||' p,c & p<>b implies ex d st p,a '||' p,d & a,b '||' c,d; canceled; theorem :: PASCH:11 not LIN p,a,b & LIN p,b,c & LIN p,a,d1 & LIN p,a,d2 & a,b '||' c,d1 & a,b '||' c,d2 implies d1=d2; theorem :: PASCH:12 not LIN a,b,c & a,b '||' c,d1 & a,b '||' c,d2 & a,c '||' b,d1 & a,c '||' b,d2 implies d1=d2; theorem :: PASCH:13 not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a implies Mid c,p,d; theorem :: PASCH:14 OAS satisfies_Int_Par_Pasch; theorem :: PASCH:15 Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b implies Mid p,a,d; theorem :: PASCH:16 OAS satisfies_Ext_Par_Pasch; theorem :: PASCH:17 not LIN a,b,a' & a,a' '||' b,b' & a,a' '||' c,c' & Mid a,b,c & LIN a',b',c' implies Mid a',b',c'; theorem :: PASCH:18 OAS satisfies_Gen_Par_Pasch; theorem :: PASCH:19 not LIN p,a,b & a,p // p,a' & b,p // p,b' & a,b '||' a',b' implies a,b // b',a'; theorem :: PASCH:20 not LIN p,a,a' & p,a // p,b & p,a' // p,b' & a,a' '||' b,b' implies a,a' // b,b'; theorem :: PASCH:21 not LIN p,a,b & p,a '||' b,c & p,b '||' a,c implies p,a // b,c & p,b // a,c; theorem :: PASCH:22 Mid p,c,b & c,d // b,a & p,d // p,a & not LIN p,a,b & p<>c implies Mid p,d,a; theorem :: PASCH:23 Mid p,d,a & c,d // b,a & p,c // p,b & not LIN p,a,b & p<>c implies Mid p,c,b; theorem :: PASCH:24 not LIN p,a,b & p,b // p,c & b,a // c,d & LIN a,p,d & p<>d implies not Mid a,p,d; theorem :: PASCH:25 p,b // p,c & b<>p implies ex x st p,a // p,x & b,a // c,x; theorem :: PASCH:26 Mid p,c,b implies ex x st Mid p,x,a & b,a // c,x; theorem :: PASCH:27 p<>b & Mid p,b,c implies ex x st Mid p,a,x & b,a // c,x; theorem :: PASCH:28 not LIN p,a,b & Mid p,c,b implies ex x st Mid p,x,a & a,b // x,c; theorem :: PASCH:29 ex x st a,x // b,c & a,b // x,c; theorem :: PASCH:30 a,b // c,d & not LIN a,b,c implies ex x st Mid a,x,d & Mid b,x,c; canceled; theorem :: PASCH:32 OAS satisfies_Fano; theorem :: PASCH:33 a,b '||' c,d & a,c '||' b,d & not LIN a,b,c implies ex x st LIN x,a,d & LIN x,b,c; theorem :: PASCH:34 a,b '||' c,d & a,c '||' b,d & not LIN a,b,c & LIN p,a,d & LIN p,b,c implies not LIN p,a,b; theorem :: PASCH:35 Mid a,b,d & Mid b,x,c & not LIN a,b,c implies ex y st Mid a,y,c & Mid y,x,d; theorem :: PASCH:36 OAS satisfies_Ext_Bet_Pasch; theorem :: PASCH:37 Mid a,b,d & Mid a,x,c & not LIN a,b,c implies ex y st Mid b,y,c & Mid x,y,d; theorem :: PASCH:38 OAS satisfies_Int_Bet_Pasch; theorem :: PASCH:39 Mid p,a,b & p,a // p',a' & not LIN p,a,p' & LIN p',a',b' & p,p' // a,a' & p,p' // b,b' implies Mid p',a',b';