Copyright (c) 1990 Association of Mizar Users
environ vocabulary RLVECT_1, ARYTM_1, VECTSP_1, PARSP_1, MCART_1, RELAT_1, INCSP_1, PARSP_2; notation ZFMISC_1, SUBSET_1, MCART_1, DOMAIN_1, STRUCT_0, RLVECT_1, VECTSP_1, PARSP_1; constructors DOMAIN_1, PARSP_1, MEMBERED, XBOOLE_0; clusters VECTSP_1, PARSP_1, STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0; theorems MCART_1, VECTSP_1, PARSP_1, RLVECT_1; begin :: :: 1. A CONSTRUCTION OF A MODEL OF A FANO-DESARGUES SPACE :: Lm1: for F being add-associative right_zeroed right_complementable (non empty LoopStr), a,b being Element of F holds a - b = 0.F implies a = b proof let F be add-associative right_zeroed right_complementable (non empty LoopStr), a,b be Element of F; assume a - b = 0.F; then a + -b = 0.F by RLVECT_1:def 11; then a = - -b by RLVECT_1:19; hence thesis by RLVECT_1:30; end; Lm2: for F being add-associative right_zeroed right_complementable (non empty LoopStr), x,y being Element of F holds (x+(-y)=0.F iff x=y) & (x-y=0.F iff x=y) proof let F be add-associative right_zeroed right_complementable (non empty LoopStr), x,y be Element of F; A1: x+(-y)=0.F iff x=y proof x+(-y)=0.F implies x=y proof assume x+(-y)=0.F; then x+((-y)+y)=0.F+y by RLVECT_1:def 6; then x+0.F=0.F+y by RLVECT_1:16; then x=0.F+y by RLVECT_1:10; hence thesis by RLVECT_1:10; end; hence thesis by RLVECT_1:16; end; x-y=0.F iff x=y proof A2: x-y=0.F implies x=y proof assume x-y=0.F; then x+(-y)+y=0.F+y by RLVECT_1:def 11; then x+((-y)+y)=0.F+y by RLVECT_1:def 6; then x+0.F=0.F+y by RLVECT_1:16; then x=0.F+y by RLVECT_1:10; hence thesis by RLVECT_1:10; end; x=y implies x-y=0.F proof assume x=y; then x-y=y+(-y) by RLVECT_1:def 11; hence thesis by RLVECT_1:16; end; hence thesis by A2; end; hence thesis by A1; end; reserve F for Field; theorem Th1: MPS(F) is ParSp proof (for a,b,c,d,p,q,r,s being Element of MPS(F) holds a,b '||' b,a & a,b '||' c,c & (a,b '||' p,q & a,b '||' r,s implies p,q '||' r,s or a=b) & (a,b '||' a,c implies b,a '||' b,c) & (ex x being Element of MPS(F) st a,b '||' c,x & a,c '||' b,x)) by PARSP_1:24,25,26,27,28; hence thesis by PARSP_1:def 12; end; reserve a,b,c,d,p,q,r for Element of MPS(F); reserve e,f,g,h,i,j,k,l,m,n,o,w for Element of [:the carrier of F,the carrier of F,the carrier of F:]; reserve K,L,M,N,R,S for Element of F; Lm3: (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F & (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F & (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F iff (ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F) proof A1: (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F & (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F & (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F implies (ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F) proof assume A2: (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F & (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F & (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F; now A3: now assume A4: e`1-f`1 <> 0.F; A5: ((g`1-h`1)*(e`1-f`1)")*(e`1-f`1) = (g`1-h`1)*((e`1-f`1)"*(e`1-f`1)) by VECTSP_1:def 16 .= (g`1-h`1)*1_ F by A4,VECTSP_1:def 22 .= g`1-h`1 by VECTSP_1:def 19; A6: ((g`1-h`1)*(e`1-f`1)")*(e`2-f`2) = (e`1-f`1)"*((g`1-h`1)*(e`2-f`2)) by VECTSP_1:def 16 .= (e`1-f`1)"*((e`1-f`1)*(g`2-h`2)) by A2,Lm1 .= ((e`1-f`1)"*(e`1-f`1))*(g`2-h`2) by VECTSP_1:def 16 .= (g`2-h`2)*1_ F by A4,VECTSP_1:def 22 .= g`2-h`2 by VECTSP_1:def 19; ((g`1-h`1)*(e`1-f`1)")*(e`3-f`3) = (e`1-f`1)"*((g`1-h`1)*(e`3-f`3)) by VECTSP_1:def 16 .= (e`1-f`1)"*((e`1-f`1)*(g`3-h`3)) by A2,Lm1 .= ((e`1-f`1)"*(e`1-f`1))*(g`3-h`3) by VECTSP_1:def 16 .= (g`3-h`3)*1_ F by A4,VECTSP_1:def 22 .= g`3-h`3 by VECTSP_1:def 19; hence thesis by A5,A6; end; A7: now assume A8: e`2-f`2 <> 0.F; A9: ((g`2-h`2)*(e`2-f`2)")*(e`1-f`1) = ((e`1-f`1)*(g`2-h`2))*(e`2-f`2)" by VECTSP_1:def 16 .= ((g`1-h`1)*(e`2-f`2))*(e`2-f`2)" by A2,Lm1 .= (g`1-h`1)*((e`2-f`2)*(e`2-f`2)") by VECTSP_1:def 16 .= (g`1-h`1)*1_ F by A8,VECTSP_1:def 22 .= g`1-h`1 by VECTSP_1:def 19; A10: ((g`2-h`2)*(e`2-f`2)")*(e`2-f`2) = (g`2-h`2)*((e`2-f`2)"*(e`2-f`2)) by VECTSP_1:def 16 .= (g`2-h`2)*1_ F by A8,VECTSP_1:def 22 .= g`2-h`2 by VECTSP_1:def 19; ((g`2-h`2)*(e`2-f`2)")*(e`3-f`3) = (e`2-f`2)"*((g`2-h`2)*(e`3-f`3)) by VECTSP_1:def 16 .= (e`2-f`2)"*((e`2-f`2)*(g`3-h`3)) by A2,Lm1 .= ((e`2-f`2)"*(e`2-f`2))*(g`3-h`3) by VECTSP_1:def 16 .= (g`3-h`3)*1_ F by A8,VECTSP_1:def 22 .= g`3-h`3 by VECTSP_1:def 19; hence thesis by A9,A10; end; now assume A11: e`3-f`3 <> 0.F; A12: ((g`3-h`3)*(e`3-f`3)")*(e`1-f`1) = ((e`1-f`1)*(g`3-h`3))*(e`3-f`3)" by VECTSP_1:def 16 .= ((g`1-h`1)*(e`3-f`3))*(e`3-f`3)" by A2,Lm1 .= (g`1-h`1)*((e`3-f`3)*(e`3-f`3)") by VECTSP_1:def 16 .= (g`1-h`1)*1_ F by A11,VECTSP_1:def 22 .= g`1-h`1 by VECTSP_1:def 19; A13: ((g`3-h`3)*(e`3-f`3)")*(e`2-f`2) = ((e`2-f`2)*(g`3-h`3))*(e`3-f`3)" by VECTSP_1:def 16 .= ((g`2-h`2)*(e`3-f`3))*(e`3-f`3)" by A2,Lm1 .= (g`2-h`2)*((e`3-f`3)*(e`3-f`3)") by VECTSP_1:def 16 .= (g`2-h`2)*1_ F by A11,VECTSP_1:def 22 .= g`2-h`2 by VECTSP_1:def 19; ((g`3-h`3)*(e`3-f`3)")*(e`3-f`3) = (g`3-h`3)*((e`3-f`3)"*(e`3-f`3)) by VECTSP_1:def 16 .= (g`3-h`3)*1_ F by A11,VECTSP_1:def 22 .= g`3-h`3 by VECTSP_1:def 19; hence thesis by A12,A13; end; hence thesis by A3,A7; end; hence thesis; end; (ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F) implies (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F & (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F & (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F proof assume A14: (ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F); A15: now assume A16: e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F; then A17: (e`1-f`1)*(g`2-h`2) = 0.F by VECTSP_1:39; A18: (e`1-f`1)*(g`3-h`3) = 0.F by A16,VECTSP_1:39; (g`1-h`1)*(e`3-f`3) = 0.F by A16,VECTSP_1:39; hence thesis by A16,A17,A18,RLVECT_1:28; end; now given K such that A19: K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3; A20: (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F proof (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = (K*(e`1-f`1))*(e`2-f`2) - (K*(e`1-f`1))*(e`2-f`2) by A19,VECTSP_1:def 16; hence thesis by RLVECT_1:28; end; A21: (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F proof (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = (K*(e`1-f`1))*(e`3-f`3) - (K*(e`1-f`1))*(e`3-f`3) by A19,VECTSP_1:def 16; hence thesis by RLVECT_1:28; end; (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F proof (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = (K*(e`2-f`2))*(e`3-f`3) - (K*(e`2-f`2))*(e`3-f`3) by A19,VECTSP_1:def 16; hence thesis by RLVECT_1:28; end; hence thesis by A20,A21; end; hence thesis by A14,A15; end; hence thesis by A1; end; theorem Th2: a,b '||' c,d iff ex e,f,g,h st [a,b,c,d] = [e,f,g,h] & ((ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F)) proof A1: a,b '||' c,d implies ex e,f,g,h st [a,b,c,d] = [e,f,g,h] & ((ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F)) proof assume a,b '||' c,d; then consider e,f,g,h such that A2: [a,b,c,d] = [e,f,g,h] & (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F & (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F & (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F by PARSP_1:23; (ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F) by A2,Lm3; hence thesis by A2; end; (ex e,f,g,h st [a,b,c,d] = [e,f,g,h] & ((ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F))) implies a,b '||' c,d proof given e,f,g,h such that A3: [a,b,c,d] = [e,f,g,h] & ((ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F)); (e`1-f`1)*(g`2-h`2) - (g`1-h`1)*(e`2-f`2) = 0.F & (e`1-f`1)*(g`3-h`3) - (g`1-h`1)*(e`3-f`3) = 0.F & (e`2-f`2)*(g`3-h`3) - (g`2-h`2)*(e`3-f`3) = 0.F by A3,Lm3; hence thesis by A3,PARSP_1:23; end; hence thesis by A1; end; theorem Th3: not a,b '||' a,c & [a,b,a,c]=[e,f,e,g] implies e<>f & e<>g & f<>g proof assume that A1: not a,b '||' a,c and A2: [a,b,a,c]=[e,f,e,g]; A3: e`1-f`1 <> 0.F or e`2-f`2 <> 0.F or e`3-f`3 <> 0.F by A1,A2,Th2; 0.F*(e`1-f`1) <> e`1-g`1 or 0.F*(e`2-f`2) <> e`2-g`2 or 0.F*(e`3-f`3) <> e`3-g`3 by A1,A2,Th2; then A4: 0.F <> e`1-g`1 or 0.F <> e`2-g`2 or 0.F <> e`3-g`3 by VECTSP_1:44; f<>g proof assume A5: not thesis; (e`1-f`1)*1_ F <> e`1-g`1 or (e`2-f`2)*1_ F <> e`2-g`2 or (e`3-f`3)*1_ F <> e`3-g`3 by A1,A2,Th2; hence contradiction by A5,VECTSP_1:def 19; end; hence thesis by A3,A4,RLVECT_1:28; end; theorem Th4: not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] & K*(e`1-f`1)=L*(e`1-g`1) & K*(e`2-f`2)=L*(e`2-g`2) & K*(e`3-f`3)=L*(e`3-g`3) implies K=0.F & L=0.F proof assume that A1: not a,b '||' a,c and A2: [a,b,a,c] = [e,f,e,g] and A3: K*(e`1-f`1)=L*(e`1-g`1) & K*(e`2-f`2)=L*(e`2-g`2) & K*(e`3-f`3)=L*(e`3-g`3); K*(e`1-f`1)*(e`2-g`2)=L*((e`1-g`1)*(e`2-g`2)) & K*(e`2-f`2)*(e`1-g`1)=L*((e`2-g`2)*(e`1-g`1)) & K*(e`2-f`2)*(e`3-g`3)=L*((e`2-g`2)*(e`3-g`3)) & K*(e`3-f`3)*(e`2-g`2)=L*((e`3-g`3)*(e`2-g`2)) & K*(e`1-f`1)*(e`3-g`3)=L*((e`1-g`1)*(e`3-g`3)) & K*(e`3-f`3)*(e`1-g`1)=L*((e`3-g`3)*(e`1-g`1)) by A3,VECTSP_1:def 16; then K*(e`1-f`1)*(e`2-g`2)-K*(e`2-f`2)*(e`1-g`1) = 0.F & K*(e`2-f`2)*(e`3-g`3)-K*(e`3-f`3)*(e`2-g`2) = 0.F & K*(e`1-f`1)*(e`3-g`3)-K*(e`3-f`3)*(e`1-g`1) = 0.F by RLVECT_1:28; then K*((e`1-f`1)*(e`2-g`2))-K*(e`2-f`2)*(e`1-g`1) = 0.F & K*((e`2-f`2)*(e`3-g`3))-K*(e`3-f`3)*(e`2-g`2) = 0.F & K*((e`1-f`1)*(e`3-g`3))-K*(e`3-f`3)*(e`1-g`1) = 0.F by VECTSP_1:def 16; then K*((e`1-f`1)*(e`2-g`2))-K*((e`2-f`2)*(e`1-g`1)) = 0.F & K*((e`2-f`2)*(e`3-g`3))-K*((e`3-f`3)*(e`2-g`2)) = 0.F & K*((e`1-f`1)*(e`3-g`3))-K*((e`3-f`3)*(e`1-g`1)) = 0.F by VECTSP_1:def 16; then A4: K*((e`1-f`1)*(e`2-g`2)-(e`1-g`1)*(e`2-f`2)) = 0.F & K*((e`2-f`2)*(e`3-g`3)-(e`2-g`2)*(e`3-f`3)) = 0.F & K*((e`1-f`1)*(e`3-g`3)-(e`1-g`1)*(e`3-f`3)) = 0.F by VECTSP_1:43; A5: (e`1-f`1)*(e`2-g`2)-(e`1-g`1)*(e`2-f`2) <> 0.F or (e`2-f`2)*(e`3-g`3)-(e`2-g`2)*(e`3-f`3) <> 0.F or (e`1-f`1)*(e`3-g`3)-(e`1-g`1)*(e`3-f`3) <> 0.F by A1,A2,PARSP_1:23; then K=0.F by A4,VECTSP_1:44; then A6: 0.F=L*(e`1-g`1) & 0.F=L*(e`2-g`2) & 0.F=L*(e`3-g`3) by A3,VECTSP_1: 39; e=[e`1,e`2,e`3] & g=[g`1,g`2,g`3] by MCART_1:48; then e`1 <> g`1 or e`2 <> g`2 or e`3 <> g`3 by A1,A2,Th3; then e`1-g`1 <> 0.F or e`2-g`2 <> 0.F or e`3-g`3 <> 0.F by Lm2; hence thesis by A4,A5,A6,VECTSP_1:44; end; Lm4: for F being add-associative right_zeroed right_complementable (non empty LoopStr), a, b, c being Element of F holds (b+a)-(c+a) = b-c proof let F be add-associative right_zeroed right_complementable (non empty LoopStr), a,b,c be Element of F; thus (b+a)-(c+a) = (b+a)+-(c+a) by RLVECT_1:def 11 .= (b+a)+(-a+-c) by RLVECT_1:45 .= ((b+a)+-a)+-c by RLVECT_1:def 6 .= (b+(a+-a))+-c by RLVECT_1:def 6 .= (b+0.F)+-c by RLVECT_1:def 10 .= b+-c by RLVECT_1:10 .= b-c by RLVECT_1:def 11; end; Lm5: (K-L)-(R-L)=K-R proof thus (K-L)-(R-L)=(K+(-L))-(R-L) by RLVECT_1:def 11 .= ((-L)+K)-(R+(-L)) by RLVECT_1:def 11 .= K-R by Lm4; end; Lm6: K*(N-M)-L*(N-S)=S-M implies (K+(-1_ F))*(N-M)=(L+(-1_ F))*(N-S) proof assume K*(N-M)-L*(N-S) = S-M; then K*(N-M)-L*(N-S) = S+(-M) by RLVECT_1:def 11 .= S+(-M)+0.F by RLVECT_1:10 .= (-M)+S+(-(N)+N) by RLVECT_1:16 .= S+((-(N)+N)+(-M)) by RLVECT_1:def 6 .= S+(-(N)+(N+(-M))) by RLVECT_1:def 6 .= S+(-(N)+(N-M)) by RLVECT_1:def 11 .= (S+(-(N)))+(N-M) by RLVECT_1:def 6 .= (S-N)+(N-M) by RLVECT_1:def 11; then K*(N-M)+(-L*(N-S))+L*(N-S) = (S-N)+(N-M)+L*(N-S) by RLVECT_1:def 11; then K*(N-M)+((-L*(N-S))+L*(N-S)) = (S-N)+(N-M)+L*(N-S) by RLVECT_1:def 6; then K*(N-M)+0.F = (S-N)+(N-M)+L*(N-S) by RLVECT_1:16; then K*(N-M) = (S-N)+(N-M)+L*(N-S) by RLVECT_1:10 .= ((S-N)+L*(N-S))+(N-M) by RLVECT_1:def 6; then K*(N-M)+(-(N-M)) = ((S-N)+L*(N-S))+((N-M)+(-(N-M))) by RLVECT_1:def 6 .= ((S-N)+L*(N-S))+0.F by RLVECT_1:16 .= (S-N)+L*(N-S) by RLVECT_1:10 .= (S+-N)+L*(N-S) by RLVECT_1:def 11 .= L*(N-S)+(-(N-S)) by RLVECT_1:47; then K*(N-M)+(-(1_ F*(N-M))) = L*(N-S)+(-(N-S)) by VECTSP_1:def 19; then K*(N-M)+((-1_ F)*(N-M)) = L*(N-S)+(-(N-S)) by VECTSP_1:41; then (K+(-1_ F))*(N-M) = L*(N-S)+(-(N-S)) by VECTSP_1:def 18 .= L*(N-S)+(-(1_ F*(N-S))) by VECTSP_1:def 19 .= L*(N-S)+((-1_ F)*(N-S)) by VECTSP_1:41; hence thesis by VECTSP_1:def 18; end; Lm7: K-L=N-M implies M=L+N-K proof assume K-L=N-M; then M+(K+(-L))=M+(N-M) by RLVECT_1:def 11; then M+(K+(-L))=M+(N+(-M)) by RLVECT_1:def 11; then (M+K)+(-L)=M+(N+(-M)) by RLVECT_1:def 6; then (M+K)+(-L)=(M+N)+(-M) by RLVECT_1:def 6; then M+K-L=N+M+(-M) by RLVECT_1:def 11; then M+K-L=N+(M+(-M)) by RLVECT_1:def 6; then M+K-L=N+0.F by RLVECT_1:16; then M+K-L+L=N+L by RLVECT_1:10; then M+K+(-L)+L=N+L by RLVECT_1:def 11; then M+K+((-L)+L)=N+L by RLVECT_1:def 6; then M+K+0.F=L+N by RLVECT_1:16; then M+K+(-K)=L+N+(-K) by RLVECT_1:10; then M+K+(-K)=L+N-K by RLVECT_1:def 11; then M+(K+(-K))=L+N-K by RLVECT_1:def 6; then M+0.F=L+N-K by RLVECT_1:16; hence thesis by RLVECT_1:10; end; theorem Th5: not a,b '||' a,c & a,b '||' c,d & a,c '||' b,d & [a,b,c,d] = [e,f,g,h] implies h`1=f`1+g`1-e`1 & h`2=f`2+g`2-e`2 & h`3=f`3+g`3-e`3 proof assume that A1: not a,b '||' a,c and A2: a,b '||' c,d and A3: a,c '||' b,d and A4: [a,b,c,d]=[e,f,g,h]; A5: a=e & b=f & c =g & d=h by A4,MCART_1:33; then A6: [a,b,a,c]=[e,f,e,g]; A7: e=[e`1,e`2,e`3] & f=[f`1,f`2,f`3] & g=[g`1,g`2,g`3] by MCART_1:48; then A8: e`1<>f`1 or e`2<>f`2 or e`3<>f`3 by A1,A6,Th3; consider i,j,k,l such that A9: [a,b,c,d]=[i,j,k,l] & (( ex K st K*(i`1-j`1) = k`1-l`1 & K*(i`2-j`2) = k`2-l`2 & K*(i`3-j`3) = k`3-l`3) or (i`1-j`1=0.F & i`2-j`2=0.F & i`3-j`3=0.F)) by A2,Th2; e=i & f=j & g=k & h=l by A4,A9,MCART_1:33; then consider K such that A10: K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3 by A8,A9,Lm2; A11: e`1<>g`1 or e`2<>g`2 or e`3<>g`3 by A1,A6,A7,Th3; consider m,n,o,w such that A12: [a,c,b,d]=[m,n,o,w] & (( ex L st L*(m`1-n`1) = o`1-w`1 & L*(m`2-n`2) = o`2-w`2 & L*(m`3-n`3) = o`3-w`3) or (m`1-n`1=0.F & m`2-n`2=0.F & m`3-n`3=0.F)) by A3,Th2; e=m & n=g & o=f & w=h by A5,A12,MCART_1:33; then consider L such that A13: L*(e`1-g`1) = f`1-h`1 & L*(e`2-g`2) = f`2-h`2 & L*(e`3-g`3) = f`3-h`3 by A11,A12,Lm2; K*(e`1-f`1)-L*(e`1-g`1) = g`1-f`1 & K*(e`2-f`2)-L*(e`2-g`2) = g`2-f`2 & K*(e`3-f`3)-L*(e`3-g`3) = g`3-f`3 by A10,A13,Lm5; then (K+(-1_ F))*(e`1-f`1) = (L+(-1_ F))*(e`1-g`1) & (K+(-1_ F))*(e`2-f`2) = (L+(-1_ F))*(e`2-g`2) & (K+(-1_ F))*(e`3-f`3) = (L+(-1_ F))*(e`3-g`3) by Lm6; then K+(-1_ F)=0.F & L+(-1_ F)=0.F by A1,A6,Th4; then (e`1-f`1)*1_ F = g`1- h`1 & (e`2-f`2)*1_ F = g`2-h`2 & (e`3-f`3)*1_ F = g`3-h`3 by A10,Lm2; then e`1-f`1 = g`1-h`1 & e`2-f`2 = g`2-h`2 & e`3-f`3 = g`3-h`3 by VECTSP_1: def 19; hence thesis by Lm7; end; Lm8: L*K-L*R=R+K implies (L-1_ F)*K=(L+1_ F)*R proof assume L*K-L*R=R+K; then L*K+(-L*R)+(-K)=R+K+(-K) by RLVECT_1:def 11 .=R+(K+(-K)) by RLVECT_1:def 6 .=R+0.F by RLVECT_1:16 .=R by RLVECT_1:10; then (L*K+(-K))+(-L*R)=R by RLVECT_1:def 6; then (L*K+(-(1_ F*K)))+(-L*R)=R by VECTSP_1:def 19; then (L*K+(-1_ F)*K)+(-L*R)=R by VECTSP_1:41; then (L+(-1_ F))*K+(-L*R)=R by VECTSP_1:def 18; then (L-1_ F)*K+(-L*R)+L*R=R+L*R by RLVECT_1:def 11; then (L-1_ F)*K+((-L*R)+L*R)=R+L*R by RLVECT_1:def 6; then (L-1_ F)*K+0.F=R+L*R by RLVECT_1:16; then (L-1_ F)*K=L*R+R by RLVECT_1:10 .=L*R+1_ F*R by VECTSP_1:def 19; hence thesis by VECTSP_1:def 18; end; Lm9: L*(K-N)=R-S & S=K+N-R implies (L-1_ F)*(R-N)=(L+1_ F)*(R-K) proof assume L*(K-N)=R-S & S=K+N-R; then A1: L*(K-N)=R+(-(K+N-R)) by RLVECT_1:def 11 .=R+(R+(-(K+N))) by RLVECT_1:47 .=R+(R+(-K+(-N))) by RLVECT_1:45 .=R+(-N+(R+(-K))) by RLVECT_1:def 6 .=(R+(-N))+(R+(-K)) by RLVECT_1:def 6 .=(R-N)+(R+(-K)) by RLVECT_1:def 11 .=(R-K)+(R-N) by RLVECT_1:def 11; L*(R-N)-L*(R-K)=L*(R+(-N))-L*(R-K) by RLVECT_1:def 11 .=L*(R+(-N))-L*(R+(-K)) by RLVECT_1:def 11 .=L*(R+(-N))+(-L*(R+(-K))) by RLVECT_1:def 11 .=L*R+L*(-N)+(-L*(R+(-K))) by VECTSP_1:def 18 .=L*R+L*(-N)+((-L)*(R+(-K))) by VECTSP_1:41 .=L*R+L*(-N)+((-L)*R+(-L)*(-K)) by VECTSP_1:def 18 .=L*R+L*(-N)+((-L)*R+L*K) by VECTSP_1:42 .=L*(-N)+L*R+(-L*R+L*K) by VECTSP_1:41 .=L*(-N)+L*R+(-L*R)+L*K by RLVECT_1:def 6 .=L*(-N)+(L*R+(-L*R))+L*K by RLVECT_1:def 6 .=L*(-N)+0.F+L*K by RLVECT_1:16 .=L*K+L*(-N) by RLVECT_1:10 .=L*(K+(-N)) by VECTSP_1:def 18 .=L*(K-N) by RLVECT_1:def 11; hence thesis by A1,Lm8; end; Lm10: K=L+M-N & R=L+S-N implies 1_ F*(M-S)=K-R proof assume A1: K=L+M-N & R=L+S-N; then -R=-(L+S+(-N)) by RLVECT_1:def 11 .=-(L+S)+(-(-N)) by RLVECT_1:45 .=-(L+S)+N by RLVECT_1:30 .=-L+(-S)+N by RLVECT_1:45; then K-R=(L+M-N)+(-L+(-S)+N) by A1,RLVECT_1:def 11 .=(M+L+(-N))+(-L+(-S)+N) by RLVECT_1:def 11 .=(M+L+(-N))+(-S+(-L+N)) by RLVECT_1:def 6 .=(M+(L+(-N)))+(-S+(-L+N)) by RLVECT_1:def 6 .=(M+(L-N))+(-S+(-L+N)) by RLVECT_1:def 11 .=(M+(L-N))+(-S+(-L+(-(-N)))) by RLVECT_1:30 .=(M+(L-N))+(-S+(-(L+(-N)))) by RLVECT_1:45 .=(M+(L-N))+(-(L-N)+(-S)) by RLVECT_1:def 11 .=((M+(L-N))+(-(L-N)))+(-S) by RLVECT_1:def 6 .=(M+((L-N)+(-(L-N))))+(-S) by RLVECT_1:def 6 .=(M+0.F)+(-S) by RLVECT_1:16 .=M+(-S) by RLVECT_1:10 .=M*1_ F+(-S) by VECTSP_1:def 19 .=M*1_ F+(-S)*1_ F by VECTSP_1:def 19 .=(M+(-S))*1_ F by VECTSP_1:def 18 .=(M-S)*1_ F by RLVECT_1:def 11; hence thesis; end; theorem Th6: ex a,b,c st not a,b '||' a,c proof A1: the carrier of MPS(F) = [:the carrier of F,the carrier of F,the carrier of F:] by PARSP_1:21; consider e,f,g being Element of [:the carrier of F,the carrier of F,the carrier of F:] such that A2: e=[1_ F,1_ F,0.F] & f=[-0.F,1_ F,0.F] & g=[1_ F,-0.F,0.F]; A3: e`1=1_ F & e`2=1_ F & e`3=0.F & f`1=-0.F & f`2=1_ F & f`3=0.F & g`1=1_ F & g`2=-0.F & g`3=0.F by A2,MCART_1:47; A4: (e`1-f`1)*(e`2-g`2)-(e`1-g`1)*(e`2-f`2) <> 0.F proof A5: (e`1-f`1)*(e`2-g`2)-(e`1-g`1)*(e`2-f`2) = (1_ F+(-(-0.F)))*(1_ F-(-0.F))-(1_ F-1_ F)*(1_ F-1_ F) by A3,RLVECT_1:def 11 .= (1_ F+(-(-0.F)))*(1_ F+(-(-0.F)))-(1_ F-1_ F)*(1_ F-1_ F) by RLVECT_1:def 11 .= (1_ F+0.F)*(1_ F+(-(-0.F)))-(1_ F-1_ F)*(1_ F-1_ F) by RLVECT_1:30 .= (1_ F+0.F)*(1_ F+0.F)-(1_ F-1_ F)*(1_ F-1_ F) by RLVECT_1:30 .= 1_ F*(1_ F+0.F)-(1_ F-1_ F)*(1_ F-1_ F) by RLVECT_1:10 .= 1_ F*1_ F-(1_ F-1_ F)*(1_ F-1_ F) by RLVECT_1:10 .= 1_ F*1_ F-0.F*(1_ F-1_ F) by RLVECT_1:28 .= 1_ F*1_ F-0.F by VECTSP_1:44 .= 1_ F-0.F by VECTSP_1:def 19; 1_ F<>0.F by VECTSP_1:def 21; hence thesis by A5,Lm2; end; consider a,b,c being Element of MPS(F) such that A6: [a,b,a,c]=[e,f,e,g] by A1; take a,b,c; now let e',f',g',h' be Element of [:the carrier of F,the carrier of F,the carrier of F:]; assume [e',f',g',h']=[a,b,a,c]; then e'=e & f'=f & g'=e & h'=g by A6,MCART_1:33; hence (e'`1-f'`1)*(g'`2-h'`2) - (g'`1-h'`1)*(e'`2-f'`2) <> 0.F or (e'`1-f'`1)*(g'`3-h'`3) - (g'`1-h'`1)*(e'`3-f'`3) <> 0.F or (e'`2-f'`2)*(g'`3-h'`3) - (g'`2-h'`2)*(e'`3-f'`3) <> 0.F by A4; end; hence thesis by PARSP_1:23; end; theorem Th7: 1_ F+1_ F<>0.F & b,c '||' a,d & a,b '||' c,d & a,c '||' b,d implies a,b '||' a,c proof assume that A1: 1_ F+1_ F<>0.F and A2: b,c '||' a,d and A3: a,b '||' c,d and A4: a,c '||' b,d; assume A5: not thesis; consider e,f,g,h such that A6: [a,b,c,d]=[e,f,g,h] & ((ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F)) by A3,Th2; A7: a=e & b=f & c =g & d=h by A6,MCART_1:33; then A8: [a,b,a,c]=[e,f,e,g]; A9: e=[e`1,e`2,e`3] & f=[f`1,f`2,f`3] & g=[g`1,g`2,g`3] by MCART_1:48; A10: h`1=f`1+g`1-e`1 & h`2=f`2+g`2-e`2 & h`3=f`3+g`3-e`3 by A3,A4,A5,A6,Th5; consider i,j,k,l such that A11: [b,c,a,d]=[i,j,k,l] & ((ex L st L*(i`1-j`1) = k`1-l`1 & L*(i`2-j`2) = k`2-l`2 & L*(i`3-j`3) = k`3-l`3) or (i`1-j`1 = 0.F & i`2-j`2 = 0.F & i`3-j`3 = 0.F)) by A2,Th2; A12: b=i & c =j & a=k & d=l by A11,MCART_1:33; then i`1<>j`1 or i`2<>j`2 or i`3<>j`3 by A5,A7,A8,A9,Th3; then consider L such that A13: L*(f`1-g`1) = e`1-h`1 & L*(f`2-g`2) = e`2-h`2 & L*(f`3-g`3) = e`3-h`3 by A7,A11,A12,Lm2; (L-1_ F)*(e`1-g`1)=(L+1_ F)*(e`1-f`1) & (L-1_ F)*(e`2-g`2)=(L+1_ F)*(e`2-f`2) & (L-1_ F)*(e`3-g`3)=(L+1_ F)*(e`3-f`3) by A10,A13,Lm9; then L+1_ F=0.F & L-1_ F=0.F by A5,A8,Th4; then L+1_ F-(L-1_ F)=0.F+(-0.F) by RLVECT_1:def 11; then L+1_ F-(L-1_ F)=0.F by RLVECT_1:16; then L+1_ F+(-(L-1_ F))=0.F by RLVECT_1:def 11; then L+1_ F+(1_ F+-L)=0.F by RLVECT_1:47; then (L+1_ F+1_ F)+(-L)=0.F by RLVECT_1:def 6; then (1_ F+1_ F+L)+(-L)=0.F by RLVECT_1:def 6; then 1_ F+1_ F+(L+(-L))=0.F by RLVECT_1:def 6; then 1_ F+1_ F+0.F=0.F by RLVECT_1:16; hence contradiction by A1,RLVECT_1:10; end; theorem Th8: not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b '||' p,q & a,c '||' p,r implies b,c '||' q,r proof assume that A1: not a,p '||' a,b and A2: not a,p '||' a,c and A3: a,p '||' b,q and A4: a,p '||' c,r and A5: a,b '||' p,q and A6: a,c '||' p,r; consider e,f,g,h such that A7: [a,b,p,q]=[e,f,g,h] & ((ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F)) by A5,Th2; A8: a=e & b=f & p=g & q=h by A7,MCART_1:33; consider i,j,k,l such that A9: [a,p,c,r]=[i,j,k,l] & ((ex L st L*(i`1-j`1) = k`1-l`1 & L*(i`2-j`2) = k`2-l`2 & L*(i`3-j`3) = k`3-l`3) or (i`1-j`1 = 0.F & i`2-j`2 = 0.F & i`3-j`3 = 0.F)) by A4,Th2; A10: a=i & p=j & c =k & r=l by A9,MCART_1:33; A11: [a,p,b,q]=[e,g,f,h] by A8; A12: [a,p,c,r]=[e,g,k,l] by A8,A10; A13: h`1=g`1+f`1-e`1 & h`2=g`2+f`2-e`2 & h`3=g`3+f`3-e`3 by A1,A3,A5,A11,Th5; A14: l`1=g`1+k`1-e`1 & l`2=g`2+k`2-e`2 & l`3=g`3+k`3-e`3 by A2,A4,A6,A12,Th5; A15: [b,c,q,r]=[f,k,h,l] by A8,A10; 1_ F*(f`1-k`1)=h`1-l`1 & 1_ F*(f`2-k`2)=h`2-l`2 & 1_ F*(f`3-k`3)=h`3-l`3 by A13,A14,Lm10; hence thesis by A15,Th2; end; :: :: 2. DEFINITION OF A FANO-DESARGUES SPACE :: definition let IT be ParSp; attr IT is FanodesSp-like means :Def1: (ex a,b,c being Element of IT st not a,b '||' a,c) & (for a,b,c,d being Element of IT holds b,c '||' a,d & a,b '||' c,d & a,c '||' b,d implies a,b '||' a,c) & (for a,b,c,p,q,r being Element of IT holds not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b '||' p,q & a,c '||' p,r implies b,c '||' q,r); end; definition cluster strict FanodesSp-like ParSp; existence proof consider FF being Fanoian Field; reconsider FdSp=MPS(FF) as ParSp by Th1; 1_ FF+1_ FF<>0.FF by VECTSP_1:def 29; then (ex a,b,c being Element of FdSp st not a,b '||' a,c) & (for a,b,c,d being Element of FdSp holds b,c '||' a,d & a,b '||' c,d & a,c '||' b,d implies a,b '||' a,c) & (for a,b,c,p,q,r being Element of FdSp holds not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b '||' p,q & a,c '||' p,r implies b,c '||' q,r) by Th6,Th7,Th8; then FdSp is FanodesSp-like by Def1; hence thesis; end; end; definition mode FanodesSp is FanodesSp-like ParSp; end; reserve FdSp for FanodesSp; reserve a,b,c,d,p,q,r,s,o,x,y for Element of FdSp; :: :: 3. AXIOMS OF A FANO-DESARGUES PARALLELITY SPACE :: canceled 4; theorem Th13: p<>q implies ex r st not p,q '||' p,r proof assume A1:p<>q; consider a,b,c such that A2: not a,b '||' a,c by Def1; not p,q '||' p,a or not p,q '||' p,b or not p,q '||' p,c by A1,A2,PARSP_1:56; hence thesis; end; definition let FdSp,a,b,c; pred a,b,c is_collinear means :Def2: a,b '||' a,c; end; canceled; theorem Th15: a,b,c is_collinear implies a,c,b is_collinear & c,b,a is_collinear & b,a,c is_collinear & b,c,a is_collinear & c,a,b is_collinear proof assume a,b,c is_collinear; then a,b '||' a,c by Def2; then a,c '||' a,b & c,b '||' c,a & b,a '||' b,c & b,c '||' b,a & c,a '||' c,b by PARSP_1:41; hence thesis by Def2; end; canceled; theorem Th17: not a,b,c is_collinear & a,b '||' p,q & a,c '||' p,r & p<>q & p<>r implies not p,q,r is_collinear proof assume A1: not a,b,c is_collinear & a,b '||' p,q & a,c '||' p,r & p<>q & p<>r; then not a,b '||' a,c by Def2; then not p,q '||' p,r by A1,PARSP_1:48; hence thesis by Def2; end; theorem Th18: a=b or b=c or c =a implies a,b,c is_collinear proof assume a=b or b=c or c =a; then a,b '||' a,c by PARSP_1:42; hence thesis by Def2; end; theorem Th19: a<>b & a,b,p is_collinear & a,b,q is_collinear & a,b,r is_collinear implies p,q,r is_collinear proof assume a<>b & a,b,p is_collinear & a,b,q is_collinear & a,b,r is_collinear; then a,b '||' a,p & a,b '||' a,q & a,b '||' a,r & a<>b by Def2; then a<>b & a,b '||' p,q & a,b '||' p,r by PARSP_1:53; then p,q '||' p,r by PARSP_1:def 12; hence thesis by Def2; end; theorem Th20: p<>q implies ex r st not p,q,r is_collinear proof assume p<>q; then consider r such that A1: not p,q '||' p,r by Th13; not p,q,r is_collinear by A1,Def2; hence thesis; end; theorem Th21: a,b,c is_collinear & a,b,d is_collinear implies a,b '||' c,d proof assume a,b,c is_collinear & a,b,d is_collinear; then a,b '||' a,c & a,b '||' a,d by Def2; hence thesis by PARSP_1:53; end; theorem Th22: not a,b,c is_collinear & a,b '||' c,d implies not a,b,d is_collinear proof assume A1: not a,b,c is_collinear & a,b '||' c,d; A2: now assume a=d; then a,b '||' a,c by A1,PARSP_1:40; hence contradiction by A1,Def2; end; now assume c <>d & a<>d; then c <>d & a<>d & not a,b,c is_collinear & a,b '||' c,d & a,c '||' c,a & c <>a & a<>b by A1,Th18,PARSP_1:42; then not c,d,a is_collinear & d,c '||' a,b & d,a '||' a,d & a<>b & a<>d by Th17,PARSP_1:40,42; then not d,c,a is_collinear & d,c '||' a,b & d,a '||' a,d & a<>b & a<>d by Th15; hence thesis by Th17; end; hence thesis by A1,A2; end; theorem Th23: not a,b,c is_collinear & a,b '||' c,d & c <>d implies not a,b,x is_collinear or not c,d,x is_collinear proof assume A1: not a,b,c is_collinear & a,b '||' c,d & c <>d; now assume c,d,x is_collinear; then c,d '||' c,x by Def2; then a,b '||' c,x by A1,PARSP_1:43; hence thesis by A1,Th22; end; hence thesis; end; theorem not o,a,b is_collinear implies not o,a,x is_collinear or not o,b,x is_collinear or o=x proof assume A1: not o,a,b is_collinear; now assume o,a,x is_collinear & o,b,x is_collinear; then not a,b,o is_collinear & a,o,x is_collinear & o,b,x is_collinear & b,o,x is_collinear by A1,Th15; then not a,b '||' a,o & a,o '||' a,x & b,o '||' b,x by Def2; hence thesis by PARSP_1:51; end; hence thesis; end; theorem o<>a & o<>b & o,a,b is_collinear & o,a,p is_collinear & o,b,q is_collinear implies a,b '||' p,q proof assume A1: o<>a & o<>b & o,a,b is_collinear & o,a,p is_collinear & o,b,q is_collinear; A2: now assume o=p; then p<>b & p,a '||' p,b & p,b '||' p,q by A1,Def2; then p<>b & a,b '||' p,b & p,b '||' p,q by PARSP_1:41; hence thesis by PARSP_1:43; end; now assume o<>p; then o<>p & o<>a & o<>b & o,a '||' o,b & o,a '||' o,p & o,b '||' o,q by A1,Def2; then o<>p & o<>b & o,b '||' a,b & o,b '||' o,p & o,b '||' o,q by PARSP_1:41,def 12; then o<>p & o<>b & o,b '||' a,b & o,b '||' o,p & o,p '||' o,q by PARSP_1:def 12; then o<>p & a,b '||' o,p & o,p '||' p,q by PARSP_1:41,def 12; hence thesis by PARSP_1:43; end; hence thesis by A2; end; theorem not a,b '||' c,d & a,b,p is_collinear & a,b,q is_collinear & c,d,p is_collinear & c,d,q is_collinear implies p=q proof assume not a,b '||' c,d & a,b,p is_collinear & a,b,q is_collinear & c,d,p is_collinear & c,d,q is_collinear; then not a,b '||' c,d & a,b '||' p,q & c,d '||' p,q by Th21; then not a,b '||' c,d & p,q '||' a,b & p,q '||' c,d by PARSP_1:40; hence thesis by PARSP_1:def 12; end; theorem a<>b & a,b,c is_collinear & a,b '||' c,d implies a,c '||' b,d proof assume A1: a<>b & a,b,c is_collinear & a,b '||' c,d; now assume b<>c; then b<>c & a,b '||' a,c by A1,Def2; then b<>c & b,c '||' a,c & a,b '||' c,b by PARSP_1:41; then b<>c & b,c '||' a,c & c,b '||' c,d by A1,PARSP_1:def 12; then b<>c & b,c '||' a,c & b,c '||' b,d by PARSP_1:41; hence thesis by PARSP_1:def 12; end; hence thesis by A1; end; theorem a<>b & a,b,c is_collinear & a,b '||' c,d implies c,b '||' c,d proof assume A1: a<>b & a,b,c is_collinear & a,b '||' c,d; now assume a<>c; then a<>c & a,b '||' a,c by A1,Def2; then a<>c & a,c '||' c,b & a,c '||' c,d by A1,PARSP_1:41,def 12; hence thesis by PARSP_1:def 12; end; hence thesis by A1; end; theorem not o,a,c is_collinear & o,a,b is_collinear & o,c,p is_collinear & o,c,q is_collinear & a,c '||' b,p & a,c '||' b,q implies p=q proof assume not o,a,c is_collinear & o,a,b is_collinear & o,c,p is_collinear & o,c,q is_collinear & a,c '||' b,p & a,c '||' b,q; then not o,a '||' o,c & o,a '||' o,b & o,c '||' o,p & o,c '||' o,q & a,c '||' b,p & a,c '||' b,q by Def2; hence thesis by PARSP_1:52; end; theorem a<>b & a,b,c is_collinear & a,b,d is_collinear implies a,c,d is_collinear proof assume a<>b & a,b,c is_collinear & a,b,d is_collinear; then a<>b & a,b '||' a,c & a,b '||' a,d by Def2; then a,c '||' a,d by PARSP_1:def 12; hence thesis by Def2; end; theorem a,b,c is_collinear & a,c,d is_collinear & a<>c implies b,c,d is_collinear proof assume a,b,c is_collinear & a,c,d is_collinear & a<>c; then a<>c & a,c,b is_collinear & a,c,c is_collinear & a,c,d is_collinear by Th15,Th18; hence thesis by Th19; end; definition let FdSp,a,b,c,d; pred parallelogram a,b,c,d means :Def3: not a,b,c is_collinear & a,b '||' c,d & a,c '||' b,d; end; canceled 2; theorem Th34: parallelogram a,b,c,d implies a<>b & b<>c & c <>a & a<>d & b<>d & c <>d proof assume A1: parallelogram a,b,c,d; then A2: not a,b,c is_collinear by Def3; A3: now assume a=d; then a,b '||' c,a by A1,Def3; then a,b '||' a,c & not a,b,c is_collinear by A1,Def3,PARSP_1:40; hence contradiction by Def2; end; A4: now assume b=d; then a,b '||' c,b by A1,Def3; then b,a '||' b,c by PARSP_1:40; then a,b '||' a,c & not a,b,c is_collinear by A1,Def3,PARSP_1:41; hence contradiction by Def2; end; now assume c =d; then a,c '||' b,c by A1,Def3; then c,a '||' c,b by PARSP_1:40; then a,b '||' a,c & not a,b,c is_collinear by A1,Def3,PARSP_1:41; hence contradiction by Def2; end; hence thesis by A2,A3,A4,Th18; end; theorem Th35: parallelogram a,b,c,d implies not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear proof assume A1: parallelogram a,b,c,d; then A2: not a,b,c is_collinear & a,b '||' b,a & a,c '||' b,d & b<>a & b<>d by Def3,Th34,PARSP_1:42; A3: not a,b,c is_collinear & a,b '||' c,d & a,c '||' c,a & c <>d & c <>a by A1,Def3,Th34,PARSP_1:42; a,b '||' c,d & a,c '||' b,d by A1,Def3; then not a,b,c is_collinear & a,b '||' d,c & a,c '||' d,b & d<>c & d<>b by A1,Def3,Th34,PARSP_1:40; hence thesis by A2,A3,Th17; end; theorem Th36: parallelogram a,b,c,d implies not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear & not a,c,b is_collinear & not b,a,c is_collinear & not b,c,a is_collinear & not c,a,b is_collinear & not c,b,a is_collinear & not b,d,a is_collinear & not a,b,d is_collinear & not a,d,b is_collinear & not d,a,b is_collinear & not d,b,a is_collinear & not c,a,d is_collinear & not a,c,d is_collinear & not a,d,c is_collinear & not d,a,c is_collinear & not d,c,a is_collinear & not d,b,c is_collinear & not b,c,d is_collinear & not b,d,c is_collinear & not c,b,d is_collinear & not c,d,b is_collinear proof assume A1: parallelogram a,b,c,d; then A2: not a,b,c is_collinear by Th35; A3: not b,a,d is_collinear by A1,Th35; A4: not c,d,a is_collinear by A1,Th35; not d,c,b is_collinear by A1,Th35; hence thesis by A2,A3,A4,Th15; end; theorem Th37: parallelogram a,b,c,d implies not a,b,x is_collinear or not c,d,x is_collinear proof assume parallelogram a,b,c,d; then not a,b,c is_collinear & a,b '||' c,d & c <>d by Def3,Th34; hence thesis by Th23; end; theorem Th38: parallelogram a,b,c,d implies parallelogram a,c,b,d proof assume parallelogram a,b,c,d; then not a,c,b is_collinear & a,b '||' c,d & a,c '||' b,d by Def3,Th36; hence thesis by Def3; end; theorem Th39: parallelogram a,b,c,d implies parallelogram c,d,a,b proof assume parallelogram a,b,c,d; then not c,d,a is_collinear & a,b '||' c,d & a,c '||' b,d by Def3,Th36; then not c,d,a is_collinear & c,d '||' a,b & c,a '||' d,b by PARSP_1:40; hence thesis by Def3; end; theorem Th40: parallelogram a,b,c,d implies parallelogram b,a,d,c proof assume A1: parallelogram a,b,c,d; then a,b '||' c,d & a,c '||' b,d by Def3; then b,a '||' d,c & b,d '||' a,c & not b,a,d is_collinear by A1,Th36,PARSP_1: 40; hence thesis by Def3; end; theorem Th41: parallelogram a,b,c,d implies parallelogram a,c,b,d & parallelogram c,d,a,b & parallelogram b,a,d,c & parallelogram c,a,d,b & parallelogram d,b,c,a & parallelogram b,d,a,c & parallelogram d,c,b,a proof assume A1: parallelogram a,b,c,d; then parallelogram a,c,b,d & parallelogram c,d,a,b & parallelogram b,a,d,c by Th38,Th39,Th40; then parallelogram c,a,d,b & parallelogram b,d,a,c & parallelogram d,c,b,a by Th38,Th39; hence thesis by A1,Th38; end; theorem Th42: not a,b,c is_collinear implies ex d st parallelogram a,b,c,d proof assume A1: not a,b,c is_collinear; consider d such that A2:(a,b '||' c,d & a,c '||' b,d) by PARSP_1:def 12; parallelogram a,b,c,d by A1,A2,Def3; hence thesis; end; theorem Th43: parallelogram a,b,c,p & parallelogram a,b,c,q implies p=q proof assume parallelogram a,b,c,p & parallelogram a,b,c,q; then not b,c,a is_collinear & a,b '||'c,p & a,c '||' b,p & a,b '||' c,q & a,c '||' b,q by Def3,Th36; then not b,c '||' b,a & b,c '||' c,b & b,a '||' c,p & b,a '||' c,q & c,a '||' b,p & c,a '||' b,q by Def2,PARSP_1:40,42; hence thesis by PARSP_1:52; end; theorem Th44: parallelogram a,b,c,d implies not a,d '||' b,c proof assume A1: parallelogram a,b,c,d; then not a,b,c is_collinear by Def3; then not a,b '||' a,c & a,b '||' c,d & a,c '||' b,d by A1,Def2,Def3; then not b,c '||' a,d by Def1; hence thesis by PARSP_1:36; end; theorem Th45: parallelogram a,b,c,d implies not parallelogram a,b,d,c proof assume parallelogram a,b,c,d; then not a,d '||' b,c by Th44; hence thesis by Def3; end; theorem Th46: a<>b implies ex c st a,b,c is_collinear & c <>a & c <>b proof assume a<>b; then consider p such that A1: not a,b,p is_collinear by Th20; consider q such that A2: parallelogram a,b,p,q by A1,Th42; not p,q,b is_collinear by A2,Th36; then consider c such that A3: parallelogram p,q,b,c by Th42; p<>q & b<>c & a,b '||' p,q & p,q '||' b,c & p,b '||' q,c by A2,A3,Def3,Th34; then a,b '||' b,c & b<>c & not a,q '||' b,p & p,b '||' q,c by A2,Th44,PARSP_1 :43; then b,a '||' b,c & b<>c & not a,q '||' b,p & c,q '||' b,p by PARSP_1:40; then b,a,c is_collinear & b<>c & a<>c by Def2; then a,b,c is_collinear & c <>b & c <>a by Th15; hence thesis; end; theorem Th47: parallelogram a,p,b,q & parallelogram a,p,c,r implies b,c '||' q,r proof assume parallelogram a,p,b,q & parallelogram a,p,c,r; then not a,p,b is_collinear & not a,p,c is_collinear & a,p '||' b,q & a,b '||' p,q & a,p '||' c,r & a,c '||' p,r by Def3; then not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,b '||' p,q & a,p '||' c,r & a,c '||' p,r by Def2; hence thesis by Def1; end; theorem Th48: not b,q,c is_collinear & parallelogram a,p,b,q & parallelogram a,p,c,r implies parallelogram b,q,c,r proof assume not b,q,c is_collinear & parallelogram a,p,b,q & parallelogram a,p,c,r; then not b,q,c is_collinear & a<>p & a,p '||' b,q & a,p '||' c,r & b,c '||' q,r by Def3,Th34,Th47; then not b,q,c is_collinear & b,q '||' c,r & b,c '||' q,r by PARSP_1:def 12; hence thesis by Def3; end; theorem Th49: a,b,c is_collinear & b<>c & parallelogram a,p,b,q & parallelogram a,p,c,r implies parallelogram b,q,c,r proof assume a,b,c is_collinear & b<>c & parallelogram a,p,b,q & parallelogram a,p,c,r; then a,b '||'a,c & not a,p,b is_collinear & a,p '||' b,q & b<>q & b<>c & parallelogram a,p,b,q & parallelogram a,p,c,r by Def2,Def3,Th34; then not a,p,b is_collinear & a,p '||' b,q & b<>q & b<>c & a,b '||' b,c & parallelogram a,p,b,q & parallelogram a,p,c,r by PARSP_1:41; then not b,q,c is_collinear & parallelogram a,p,b,q & parallelogram a,p,c,r by Th17; hence thesis by Th48; end; theorem Th50: parallelogram a,p,b,q & parallelogram a,p,c,r & parallelogram b,q,d,s implies c,d '||' r,s proof assume A1: parallelogram a,p,b,q & parallelogram a,p,c,r & parallelogram b,q,d,s; A2: now assume not b,q,c is_collinear; then parallelogram b,q,c,r & parallelogram b,q,d,s by A1,Th48; hence thesis by Th47; end; A3: now assume not a,p,d is_collinear; then not a,p,d is_collinear & parallelogram b,q,a,p & parallelogram b,q,d,s & parallelogram a,p,c,r by A1,Th41; then parallelogram a,p,d,s & parallelogram a,p,c,r by Th48; hence thesis by Th47; end; now assume A4: b,q,c is_collinear & a,p,d is_collinear; a<>b by A1,Th34; then consider x such that A5: a,b,x is_collinear & x<>a & x<>b by Th46; A6: a,b '||' a,x by A5,Def2; A7: not a,p,b is_collinear by A1,Th36; A8: a,p '||' a,p by PARSP_1:42; a<>p by A1,Th34; then not a,p,x is_collinear by A5,A6,A7,A8,Th17; then consider y such that A9: parallelogram a,p,x,y by Th42; A10: parallelogram b,q,x,y by A1,A5,A9,Th49; then not x,y,c is_collinear & not x,y,d is_collinear by A4,A9,Th37; then parallelogram x,y,c,r & parallelogram x,y,d,s by A1,A9,A10,Th48; hence thesis by Th47; end; hence thesis by A2,A3; end; theorem Th51: a<>b implies ex c,d st parallelogram a,b,c,d proof assume a<>b; then consider c such that A1: not a,b,c is_collinear by Th20; ex d st parallelogram a,b,c,d by A1,Th42; hence thesis; end; theorem a<>d implies ex b,c st parallelogram a,b,c,d proof assume a<>d; then consider b such that A1: not a,d,b is_collinear by Th20; not b,a,d is_collinear by A1,Th15; then consider c such that A2: parallelogram b,a,d,c by Th42; parallelogram a,b,c,d by A2,Th41; hence thesis; end; definition let FdSp,a,b,r,s; pred a,b congr r,s means :Def4: (a=b & r=s) or (ex p,q st parallelogram p,q,a,b & parallelogram p,q,r,s); end; canceled 2; theorem Th55: a,a congr b,c implies b=c proof assume a,a congr b,c; then (a=a & b=c) or (ex p,q st parallelogram p,q,a,a & parallelogram p,q,b,c) by Def4; hence thesis by Th34; end; theorem a,b congr c,c implies a=b proof assume a,b congr c,c; then (a=b & c =c) or (ex p,q st parallelogram p,q,a,b & parallelogram p,q,c,c) by Def4; hence thesis by Th34; end; theorem a,b congr b,a implies a=b proof assume A1:a,b congr b,a; now assume a<>b; then ex p,q st parallelogram p,q,a,b & parallelogram p,q,b,a by A1,Def4; hence contradiction by Th45; end; hence thesis; end; theorem Th58: a,b congr c,d implies a,b '||' c,d proof assume A1:a,b congr c,d; now assume a<>b; then consider p,q such that A2: parallelogram p,q,a,b & parallelogram p,q,c,d by A1,Def4; p<>q & p,q '||' a,b & p,q '||' c,d by A2,Def3,Th34; hence thesis by PARSP_1:def 12; end; hence thesis by PARSP_1:37; end; theorem Th59: a,b congr c,d implies a,c '||' b,d proof assume A1: a,b congr c,d; A2: now assume a=b; then a=b & c =d by A1,Th55; hence thesis by PARSP_1:42; end; now assume a<>b; then ex p,q st parallelogram p,q,a,b & parallelogram p,q,c,d by A1,Def4; hence thesis by Th47; end; hence thesis by A2; end; theorem Th60: a,b congr c,d & not a,b,c is_collinear implies parallelogram a,b,c,d proof assume a,b congr c,d & not a,b,c is_collinear; then not a,b,c is_collinear & a,b '||' c,d & a,c '||' b,d by Th58,Th59; hence thesis by Def3; end; theorem Th61: parallelogram a,b,c,d implies a,b congr c,d proof assume A1: parallelogram a,b,c,d; then a<>c by Th34; then consider p such that A2: a,c,p is_collinear & a<>p & c <>p by Th46; not a,c,b is_collinear & a,c '||' a,p & a,b '||' a,b & a<>p & a<>b by A1,A2,Def2,Th34,Th36,PARSP_1:42; then not a,p,b is_collinear by Th17; then consider q such that A3: parallelogram a,p,b,q by Th42; parallelogram a,b,p,q by A3,Th41; then parallelogram c,d,p,q by A1,A2,Th49; then parallelogram p,q,a,b & parallelogram p,q,c,d by A3,Th41; hence thesis by Def4; end; theorem Th62: a,b congr c,d & a,b,c is_collinear & parallelogram r,s,a,b implies parallelogram r,s,c,d proof assume A1: a,b congr c,d & a,b,c is_collinear & parallelogram r,s,a,b; now assume A2: a<>b; then consider p,q such that A3: parallelogram p,q,a,b & parallelogram p,q,c,d by A1,Def4; A4: not r,s,c is_collinear by A1,Th37; a<>b & r,s '||' a,b & a,b '||' c,d by A1,A2,Def3,Th58; then A5: r,s '||' c,d by PARSP_1:43; parallelogram a,b,r,s & parallelogram a,b,p,q & parallelogram p,q,c,d by A1,A3,Th41; then r,c '||' s,d by Th50; hence thesis by A4,A5,Def3; end; hence thesis by A1,Th34; end; theorem a,b congr c,x & a,b congr c,y implies x=y proof assume A1: a,b congr c,x & a,b congr c,y; A2: now assume a=b; then c =x & c =y by A1,Th55; hence thesis; end; A3: now assume A4: a<>b & a,b,c is_collinear; then consider p,q such that A5: parallelogram a,b,p,q by Th51; parallelogram p,q,a,b by A5,Th41; then parallelogram p,q,c,x & parallelogram p,q,c,y by A1,A4,Th62; hence thesis by Th43; end; now assume a<>b & not a,b,c is_collinear; then parallelogram a,b,c,x & parallelogram a,b,c,y by A1,Th60; hence thesis by Th43; end; hence thesis by A2,A3; end; theorem ex d st a,b congr c,d proof A1:now assume a=b; then a,b congr c,c by Def4; hence thesis; end; A2: now assume A3: a<>b & a,b,c is_collinear; then consider p,q such that A4: parallelogram a,b,p,q by Th51; A5: parallelogram p,q,a,b & not p,q,c is_collinear by A3,A4,Th37,Th41; then consider d such that A6: parallelogram p,q,c,d by Th42; a,b congr c,d by A5,A6,Def4; hence thesis; end; now assume a<>b & not a,b,c is_collinear; then consider d such that A7: parallelogram a,b,c,d by Th42; a,b congr c,d by A7,Th61; hence thesis; end; hence thesis by A1,A2; end; canceled; theorem Th66: a,b congr a,b proof now assume a<>b; then consider p,q such that A1: parallelogram a,b,p,q by Th51; parallelogram p,q,a,b & parallelogram p,q,a,b by A1,Th41; hence thesis by Def4; end; hence thesis by Def4; end; theorem Th67: r,s congr a,b & r,s congr c,d implies a,b congr c,d proof assume A1: r,s congr a,b & r,s congr c,d; A2: now assume r=s; then a=b & c =d by A1,Th55; hence thesis by Def4; end; A3: now assume A4: r<>s & r,s,a is_collinear; then consider p,q such that A5: parallelogram p,q,r,s & parallelogram p,q,c,d by A1,Def4; parallelogram p,q,a,b by A1,A4,A5,Th62; hence thesis by A5,Def4; end; A6: now assume A7: r<>s & r,s,c is_collinear; then consider p,q such that A8: parallelogram p,q,r,s & parallelogram p,q,a,b by A1,Def4; parallelogram p,q,c,d by A1,A7,A8,Th62; hence thesis by A8,Def4; end; now assume r<>s & not r,s,a is_collinear & not r,s,c is_collinear; then parallelogram r,s,a,b & parallelogram r,s,c,d by A1,Th60; hence thesis by Def4; end; hence thesis by A2,A3,A6; end; theorem a,b congr c,d implies c,d congr a,b proof assume a,b congr c,d; then a,b congr c,d & a,b congr a,b by Th66; hence thesis by Th67; end; theorem a,b congr c,d implies b,a congr d,c proof assume A1: a,b congr c,d; A2: now assume a=b; then a=b & c =d by A1,Th55; hence thesis by Def4; end; now assume a<>b; then consider p,q such that A3: parallelogram p,q,a,b & parallelogram p,q,c,d by A1,Def4; parallelogram q,p,b,a & parallelogram q,p,d,c by A3,Th41; hence thesis by Def4; end; hence thesis by A2; end;