environ vocabulary RLVECT_1, ARYTM_1, VECTSP_1, PARSP_1, MCART_1, RELAT_1, INCSP_1, PARSP_2; notation ZFMISC_1, SUBSET_1, MCART_1, DOMAIN_1, STRUCT_0, RLVECT_1, VECTSP_1, PARSP_1; constructors DOMAIN_1, PARSP_1, MEMBERED, XBOOLE_0; clusters VECTSP_1, PARSP_1, STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0; begin reserve F for Field; theorem :: PARSP_2:1 MPS(F) is ParSp; reserve a,b,c,d,p,q,r for Element of MPS(F); reserve e,f,g,h,i,j,k,l,m,n,o,w for Element of [:the carrier of F,the carrier of F,the carrier of F:]; reserve K,L,M,N,R,S for Element of F; theorem :: PARSP_2:2 a,b '||' c,d iff ex e,f,g,h st [a,b,c,d] = [e,f,g,h] & ((ex K st K*(e`1-f`1) = g`1-h`1 & K*(e`2-f`2) = g`2-h`2 & K*(e`3-f`3) = g`3-h`3) or (e`1-f`1 = 0.F & e`2-f`2 = 0.F & e`3-f`3 = 0.F)); theorem :: PARSP_2:3 not a,b '||' a,c & [a,b,a,c]=[e,f,e,g] implies e<>f & e<>g & f<>g; theorem :: PARSP_2:4 not a,b '||' a,c & [a,b,a,c] = [e,f,e,g] & K*(e`1-f`1)=L*(e`1-g`1) & K*(e`2-f`2)=L*(e`2-g`2) & K*(e`3-f`3)=L*(e`3-g`3) implies K=0.F & L=0.F; theorem :: PARSP_2:5 not a,b '||' a,c & a,b '||' c,d & a,c '||' b,d & [a,b,c,d] = [e,f,g,h] implies h`1=f`1+g`1-e`1 & h`2=f`2+g`2-e`2 & h`3=f`3+g`3-e`3; theorem :: PARSP_2:6 ex a,b,c st not a,b '||' a,c; theorem :: PARSP_2:7 1_ F+1_ F<>0.F & b,c '||' a,d & a,b '||' c,d & a,c '||' b,d implies a,b '||' a,c; theorem :: PARSP_2:8 not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b '||' p,q & a,c '||' p,r implies b,c '||' q,r; :: :: 2. DEFINITION OF A FANO-DESARGUES SPACE :: definition let IT be ParSp; attr IT is FanodesSp-like means :: PARSP_2:def 1 (ex a,b,c being Element of IT st not a,b '||' a,c) & (for a,b,c,d being Element of IT holds b,c '||' a,d & a,b '||' c,d & a,c '||' b,d implies a,b '||' a,c) & (for a,b,c,p,q,r being Element of IT holds not a,p '||' a,b & not a,p '||' a,c & a,p '||' b,q & a,p '||' c,r & a,b '||' p,q & a,c '||' p,r implies b,c '||' q,r); end; definition cluster strict FanodesSp-like ParSp; end; definition mode FanodesSp is FanodesSp-like ParSp; end; reserve FdSp for FanodesSp; reserve a,b,c,d,p,q,r,s,o,x,y for Element of FdSp; :: :: 3. AXIOMS OF A FANO-DESARGUES PARALLELITY SPACE :: canceled 4; theorem :: PARSP_2:13 p<>q implies ex r st not p,q '||' p,r; definition let FdSp,a,b,c; pred a,b,c is_collinear means :: PARSP_2:def 2 a,b '||' a,c; end; canceled; theorem :: PARSP_2:15 a,b,c is_collinear implies a,c,b is_collinear & c,b,a is_collinear & b,a,c is_collinear & b,c,a is_collinear & c,a,b is_collinear; canceled; theorem :: PARSP_2:17 not a,b,c is_collinear & a,b '||' p,q & a,c '||' p,r & p<>q & p<>r implies not p,q,r is_collinear; theorem :: PARSP_2:18 a=b or b=c or c =a implies a,b,c is_collinear; theorem :: PARSP_2:19 a<>b & a,b,p is_collinear & a,b,q is_collinear & a,b,r is_collinear implies p,q,r is_collinear; theorem :: PARSP_2:20 p<>q implies ex r st not p,q,r is_collinear; theorem :: PARSP_2:21 a,b,c is_collinear & a,b,d is_collinear implies a,b '||' c,d; theorem :: PARSP_2:22 not a,b,c is_collinear & a,b '||' c,d implies not a,b,d is_collinear; theorem :: PARSP_2:23 not a,b,c is_collinear & a,b '||' c,d & c <>d implies not a,b,x is_collinear or not c,d,x is_collinear; theorem :: PARSP_2:24 not o,a,b is_collinear implies not o,a,x is_collinear or not o,b,x is_collinear or o=x; theorem :: PARSP_2:25 o<>a & o<>b & o,a,b is_collinear & o,a,p is_collinear & o,b,q is_collinear implies a,b '||' p,q; theorem :: PARSP_2:26 not a,b '||' c,d & a,b,p is_collinear & a,b,q is_collinear & c,d,p is_collinear & c,d,q is_collinear implies p=q; theorem :: PARSP_2:27 a<>b & a,b,c is_collinear & a,b '||' c,d implies a,c '||' b,d; theorem :: PARSP_2:28 a<>b & a,b,c is_collinear & a,b '||' c,d implies c,b '||' c,d; theorem :: PARSP_2:29 not o,a,c is_collinear & o,a,b is_collinear & o,c,p is_collinear & o,c,q is_collinear & a,c '||' b,p & a,c '||' b,q implies p=q; theorem :: PARSP_2:30 a<>b & a,b,c is_collinear & a,b,d is_collinear implies a,c,d is_collinear; theorem :: PARSP_2:31 a,b,c is_collinear & a,c,d is_collinear & a<>c implies b,c,d is_collinear; definition let FdSp,a,b,c,d; pred parallelogram a,b,c,d means :: PARSP_2:def 3 not a,b,c is_collinear & a,b '||' c,d & a,c '||' b,d; end; canceled 2; theorem :: PARSP_2:34 parallelogram a,b,c,d implies a<>b & b<>c & c <>a & a<>d & b<>d & c <>d; theorem :: PARSP_2:35 parallelogram a,b,c,d implies not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear; theorem :: PARSP_2:36 parallelogram a,b,c,d implies not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear & not a,c,b is_collinear & not b,a,c is_collinear & not b,c,a is_collinear & not c,a,b is_collinear & not c,b,a is_collinear & not b,d,a is_collinear & not a,b,d is_collinear & not a,d,b is_collinear & not d,a,b is_collinear & not d,b,a is_collinear & not c,a,d is_collinear & not a,c,d is_collinear & not a,d,c is_collinear & not d,a,c is_collinear & not d,c,a is_collinear & not d,b,c is_collinear & not b,c,d is_collinear & not b,d,c is_collinear & not c,b,d is_collinear & not c,d,b is_collinear; theorem :: PARSP_2:37 parallelogram a,b,c,d implies not a,b,x is_collinear or not c,d,x is_collinear; theorem :: PARSP_2:38 parallelogram a,b,c,d implies parallelogram a,c,b,d; theorem :: PARSP_2:39 parallelogram a,b,c,d implies parallelogram c,d,a,b; theorem :: PARSP_2:40 parallelogram a,b,c,d implies parallelogram b,a,d,c; theorem :: PARSP_2:41 parallelogram a,b,c,d implies parallelogram a,c,b,d & parallelogram c,d,a,b & parallelogram b,a,d,c & parallelogram c,a,d,b & parallelogram d,b,c,a & parallelogram b,d,a,c & parallelogram d,c,b,a; theorem :: PARSP_2:42 not a,b,c is_collinear implies ex d st parallelogram a,b,c,d; theorem :: PARSP_2:43 parallelogram a,b,c,p & parallelogram a,b,c,q implies p=q; theorem :: PARSP_2:44 parallelogram a,b,c,d implies not a,d '||' b,c; theorem :: PARSP_2:45 parallelogram a,b,c,d implies not parallelogram a,b,d,c; theorem :: PARSP_2:46 a<>b implies ex c st a,b,c is_collinear & c <>a & c <>b; theorem :: PARSP_2:47 parallelogram a,p,b,q & parallelogram a,p,c,r implies b,c '||' q,r; theorem :: PARSP_2:48 not b,q,c is_collinear & parallelogram a,p,b,q & parallelogram a,p,c,r implies parallelogram b,q,c,r; theorem :: PARSP_2:49 a,b,c is_collinear & b<>c & parallelogram a,p,b,q & parallelogram a,p,c,r implies parallelogram b,q,c,r; theorem :: PARSP_2:50 parallelogram a,p,b,q & parallelogram a,p,c,r & parallelogram b,q,d,s implies c,d '||' r,s; theorem :: PARSP_2:51 a<>b implies ex c,d st parallelogram a,b,c,d; theorem :: PARSP_2:52 a<>d implies ex b,c st parallelogram a,b,c,d; definition let FdSp,a,b,r,s; pred a,b congr r,s means :: PARSP_2:def 4 (a=b & r=s) or (ex p,q st parallelogram p,q,a,b & parallelogram p,q,r,s); end; canceled 2; theorem :: PARSP_2:55 a,a congr b,c implies b=c; theorem :: PARSP_2:56 a,b congr c,c implies a=b; theorem :: PARSP_2:57 a,b congr b,a implies a=b; theorem :: PARSP_2:58 a,b congr c,d implies a,b '||' c,d; theorem :: PARSP_2:59 a,b congr c,d implies a,c '||' b,d; theorem :: PARSP_2:60 a,b congr c,d & not a,b,c is_collinear implies parallelogram a,b,c,d; theorem :: PARSP_2:61 parallelogram a,b,c,d implies a,b congr c,d; theorem :: PARSP_2:62 a,b congr c,d & a,b,c is_collinear & parallelogram r,s,a,b implies parallelogram r,s,c,d; theorem :: PARSP_2:63 a,b congr c,x & a,b congr c,y implies x=y; theorem :: PARSP_2:64 ex d st a,b congr c,d; canceled; theorem :: PARSP_2:66 a,b congr a,b; theorem :: PARSP_2:67 r,s congr a,b & r,s congr c,d implies a,b congr c,d; theorem :: PARSP_2:68 a,b congr c,d implies c,d congr a,b; theorem :: PARSP_2:69 a,b congr c,d implies b,a congr d,c;