The Mizar article:

One-Dimensional Congruence of Segments, Basic Facts and Midpoint Relation

by
Barbara Konstanta,
Urszula Kowieska,
Grzegorz Lewandowski, and
Krzysztof Prazmowski

Received October 4, 1990

Copyright (c) 1990 Association of Mizar Users

MML identifier: AFVECT01
[ MML identifier index ]


environ

 vocabulary AFVECT0, RELAT_1, ANALOAF, PARSP_1, DIRAF, REALSET1, AFVECT01;
 notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, STRUCT_0, ANALOAF, DIRAF,
      AFVECT0, RELSET_1, REALSET1;
 constructors AFVECT0, DIRAF, DOMAIN_1, MEMBERED, XBOOLE_0;
 clusters AFVECT0, STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0;
 requirements SUBSET, BOOLE;
 theorems ZFMISC_1, AFVECT0, STRUCT_0, ANALOAF, REALSET1, DIRAF;
 schemes RELSET_1;

begin

reserve AFV for WeakAffVect;
reserve a,a',b,b',c,d,p,p',q,q',r,r' for Element of AFV;

definition
 let A be non empty set, C be Relation of [:A,A:];
 cluster AffinStruct(#A,C#) -> non empty;
 coherence by STRUCT_0:def 1;
end;

Lm1: a,b '||' b,c & a<>c implies a,b // b,c
proof assume A1: a,b '||' b,c & a<>c;
    now assume a,b // c,b; then b,a // b,c by AFVECT0:8;
  hence contradiction by A1,AFVECT0:5; end;
 hence thesis by A1,DIRAF:def 4; end;

Lm2: a,b // b,a iff ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b
 proof A1: now assume A2: a,b // b,a;
 A3: now assume A4: a=b; take p=a,q=a;
    a,b // p,q & a,p // p,b & a,q // q,b by A4,AFVECT0:3; hence
    a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by DIRAF:def 4; end;
    now assume A5: a<>b; consider p such that A6: Mid a,p,b by AFVECT0:24;
  consider q such that A7: a,b // p,q by AFVECT0:def 1;
    MDist a,b by A2,A5,AFVECT0:def 2; then MDist p,q by A7,AFVECT0:19;
  then A8: Mid a,q,b by A6,AFVECT0:28; A9: a,p // p,b by A6,AFVECT0:def 3;
  A10: a,q // q,b by A8,AFVECT0:def 3; take p,q; thus
    a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A7,A9,A10,DIRAF:def 4; end;
 hence ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A3; end;
   now given p,q such that A11: a,b '||' p,q & a,p '||' p,b & a,q '||' q,b;
    now assume A12: a<>b; then a,p // p,b & a,q // q,b by A11,Lm1;
then A13:  Mid a,p,b & Mid a,q,b by AFVECT0:def 3;
  A14: now assume p=q; then a,b // p,p by A11,DIRAF:def 4;
   hence contradiction by A12,AFVECT0:def 1; end;
     now assume A15: MDist p,q;
    a,b // p,q or a,b // q,p by A11,DIRAF:def 4; then p,q // a,b or q,p // a,b
  by AFVECT0:4; then MDist a,b by A15,AFVECT0:19; hence a,b // b,a
  by AFVECT0:def 2; end;
 hence a,b // b,a by A13,A14,AFVECT0:25; end;
 hence a,b // b,a by AFVECT0:3; end;
hence thesis by A1; end;

Lm3: a,b '||' c,d implies b,a '||' c,d
proof assume a,b '||' c,d; then a,b // c,d or a,b // d,c by DIRAF:def 4;
then b,a // d,c or b,a // c,d by AFVECT0:8; hence thesis by DIRAF:def 4; end;

Lm4: a,b '||' b,a
proof a,b // a,b by AFVECT0:2; hence thesis by DIRAF:def 4; end;

Lm5: a,b '||' p,p implies a=b
proof assume a,b '||' p,p; then a,b // p,p by DIRAF:def 4;
hence thesis by AFVECT0:def 1; end;

Lm6: for a,b,c,d,p,q holds a,b '||' p,q & c,d '||' p,q implies a,b '||' c,d
proof let a,b,c,d,p,q; assume a,b '||' p,q & c,d '||' p,q;
then (a,b // p,q & c,d // p,q) or ( a,b // p,q & c,d // q,p) or
(a,b // q,p & c,d // p,q) or (a,b // q,p & c,d // q,p) by DIRAF:def 4;
then a,b // c,d or (a,b // p,q & d,c // p,q) or (a,b // q,p & d,c // q,p)
by AFVECT0:8,def 1; then a,b // c,d or a,b // d,c by AFVECT0:def 1;
hence thesis by DIRAF:def 4; end;

Lm7: ex b st a,b '||' b,c
proof consider b such that A1: a,b // b,c by AFVECT0:def 1; take b;
thus a,b '||' b,c by A1,DIRAF:def 4; end;

Lm8: for a,a',b,b',p st a<>a' & b<>b' & p,a '||' p,a' & p,b '||' p,b'
 holds a,b '||' a',b'
proof let a,a',b,b',p;
assume a<>a' & b<>b' & p,a '||' p,a' & p,b '||' p,b';
then a<>a' & b<>b' & a,p '||' p,a' & b,p '||' p,b' by Lm3;
then a,p // p,a' & b,p // p,b' by Lm1;
then Mid a,p,a' & Mid b,p,b' by AFVECT0:def 3; then a,b // b',a' by AFVECT0:30;
hence thesis by DIRAF:def 4; end;

Lm9: a=b or ex c st (a<>c & a,b '||' b,c) or ex p,p' st
 (p<>p' & a,b '||' p,p' & a,p '||' p,b & a,p' '||' p',b)
proof consider c such that A1: a,b // b,c by AFVECT0:def 1;
A2: now assume a=c; then consider p,p' such that
 A3: a,b '||' p,p' & a,p '||' p,b & a,p' '||' p',b by A1,Lm2;
     p=p' implies a=b by A3,Lm5;
hence a=b or ex p,p' st
 p<>p' & a,b '||' p,p' & a,p '||' p,b & a,p' '||' p',b by A3; end;
   now assume A4: a<>c; a,b '||' b,c by A1,DIRAF:def 4;
 hence ex c st a<>c & a,b '||' b,c by A4; end;
hence thesis by A2; end;

Lm10: for a,b,b',p,p',c st a,b '||' b,c & b,b' '||' p,p' & b,p '||' p,b' &
 b,p' '||' p',b' holds a,b' '||' b',c
proof let a,b,b',p,p',c; assume A1:
 a,b '||' b,c & b,b' '||' p,p' & b,p '||' p,b' &
 b,p' '||' p',b'; then A2: a,b '||' b,c & b,b' // b',b by Lm2;
A3: now assume A4: a,b // b,c; then A5: Mid a,b,c by AFVECT0:def 3;
 A6: now assume MDist b,b'; then Mid a,b',c by A5,AFVECT0:28;
 then a,b' // b',c by AFVECT0:def 3; hence thesis by DIRAF:def 4; end;
     b=b' implies thesis by A4,DIRAF:def 4;
hence thesis by A2,A6,AFVECT0:def 2; end;
   now assume a,b // c,b; then b,a // b,c by AFVECT0:8; then a=c
by AFVECT0:5; then a,b' // c,b' by AFVECT0:2; hence thesis by DIRAF:def 4;
end;
hence thesis by A1,A3,DIRAF:def 4; end;

Lm11: for a,b,b',c st a<>c & b<>b' & a,b '||' b,c & a,b' '||' b',c holds
 ex p,p' st p<>p' & b,b' '||' p,p' & b,p '||' p,b' & b,p' '||' p',b'
proof let a,b,b',c;
assume A1: a<>c & b<>b' & a,b '||' b,c & a,b' '||' b',c;
then b<>b' & a,b // b,c & a,b' // b',c by Lm1;
then b<>b' & Mid a,b,c & Mid a,b',c by AFVECT0:def 3; then b<>b' & MDist b,
b' by AFVECT0:25;
 then b,b' // b',b by AFVECT0:def 2; then consider p,p' such that
 A2: b,b' '||' p,p' & b,p '||' p,b' & b,p' '||' p',b' by Lm2;
     p<>p' implies thesis by A2;
hence thesis by A1,A2,Lm5; end;

Lm12: for a,b,c,p,p',q,q' st (a,b '||' p,p' & a,c '||' q,q' & a,p '||' p,b &
 a,q '||' q,c & a,p' '||' p',b & a,q' '||' q',c) holds ex r,r' st
 b,c '||' r,r' & b,r '||' r,c & b,r' '||' r',c
proof let a,b,c,p,p',q,q';
assume a,b '||' p,p' & a,c '||' q,q' & a,p '||' p,b & a,q '||' q,c &
a,p' '||' p',b & a,q' '||' q',c; then a,b // b,a & a,c // c,a by Lm2;
then b,c // c,b by AFVECT0:13; hence thesis by Lm2; end;

 consider AFV0 being WeakAffVect;
set X = the carrier of AFV0; set XX = [:X,X:];
defpred P[set,set] means
  ex a,b,c,d being Element of X st $1=[a,b] & $2=[c,d] & a,b '||' c,d;
consider P being Relation of XX,XX such that
   Lm13: for x,y being set holds [x,y] in P iff
     x in XX & y in XX & P[x,y] from Rel_On_Set_Ex;

Lm14: for a,b,c,d being Element of X holds [[a,b],[c,d]] in P iff a,b '||' c,d
proof let a,b,c,d be Element of X;
A1: [[a,b],[c,d]] in P implies a,b '||' c,d proof assume [[a,b],[c,d]] in P;
 then consider a',b',c',d' being Element of X such that
       A2: [a,b]=[a',b'] & [c,d]=[c',d'] and
       A3: a',b' '||' c',d' by Lm13;
   a=a' & b=b' & c = c' & d=d' by A2,ZFMISC_1:33; hence thesis by A3; end;
      [a,b] in XX & [c,d] in XX by ZFMISC_1:def 2;
hence thesis by A1,Lm13; end;
set WAS = AffinStruct(#the carrier of AFV0,P#);
Lm15: for a,b,c,d being Element of AFV0, a',b',c',d' being
 Element
of the carrier of WAS st a=a' & b=b' & c =c' & d=d' holds
a,b '||' c,d iff a',b' // c',d'
proof let a,b,c,d be Element of AFV0, a',b',c',d' be Element
of the carrier of WAS such that A1: a=a' & b=b' & c =c' & d=d';
A2: now assume a,b '||' c,d;
 then [[a,b],[c,d]] in the CONGR of WAS by Lm14;
 hence a',b' // c',d' by A1,ANALOAF:def 2; end;
   now assume a',b' // c',d'; then [[a',b'],[c',d']] in P by ANALOAF:def 2;
 hence a,b '||' c,d by A1,Lm14; end;
 hence thesis by A2; end;

Lm16:now
thus ex a',b' being Element of WAS st a'<>b'
  by REALSET1:def 20;
thus for a',b' being Element of WAS holds a',b' // b',a' proof
let a',b' be Element of WAS; reconsider a=a',b=b' as Element
of the carrier of AFV0; a,b '||' b,a by Lm4; hence thesis by Lm15; end;
thus for a',b' being Element of WAS st a',b' // a',a'
holds a'=b' proof let a',b' be Element of WAS such that
A1: a',b' // a',a'; reconsider a=a',b=b' as Element of AFV0
; a,b '||' a,a by A1,Lm15; hence thesis by Lm5; end;
thus for a,b,c,d,p,q being Element of WAS st a,b // p,q &
 c,d // p,q holds a,b // c,d proof let a,b,c,d,p,q be Element of the carrier
 of WAS such that A2: a,b // p,q & c,d // p,q; reconsider a1=a,b1=b,c1=c,
 d1=d,p1=p,q1=q
 as Element of AFV0; a1,b1 '||' p1,q1 & c1,d1 '||' p1,q1
 by A2,Lm15; then a1,b1 '||' c1,d1 by Lm6; hence thesis by Lm15; end;
thus for a,c being Element of WAS ex b being Element of the
carrier of WAS st a,b // b,c proof let a,c be Element of WAS;
reconsider a1=a,c1=c as Element of AFV0; consider b1
being Element of AFV0 such that A3: a1,b1 '||' b1,c1 by Lm7;
reconsider b=b1 as Element of WAS; a,b // b,c by A3,Lm15;
hence
 thesis; end;
thus for a,a',b,b',p being Element of WAS st a<>a' & b<>b'&
p,a // p,a' & p,b // p,b' holds a,b // a',b' proof let a,a',b,b',p be
Element of WAS such that A4: a<>a' & b<>b' and A5:
p,a // p,a' & p,b // p,b'; reconsider a1=a,a1'=a',b1=b,b1'=b',p1=p as
Element of AFV0; p1,a1 '||' p1,a1' & p1,b1 '||' p1,b1'
by A5,Lm15; then a1,b1 '||' a1',b1' by A4,Lm8; hence thesis by Lm15; end;
thus for a,b being Element of WAS holds a=b or
ex c being Element of WAS st ( a<>c & a,b // b,c) or
ex p,p' being Element of WAS st
            (p<>p' & a,b // p,p'& a,p // p,b & a,p' // p',b) proof
let a,b be Element of WAS such that A6: not a=b;
reconsider a1=a,b1=b as Element of AFV0;
A7: now given c1 being Element of AFV0 such that
  A8: a1<>c1 & a1,b1 '||' b1,c1; reconsider c =c1 as Element of the carrier
  of WAS; a<>c & a,b // b,c by A8,Lm15; hence
    ex c being Element of WAS st ( a<>c & a,b // b,c); end;
   now given p1,p1' being Element of AFV0 such that A9:
  (p1<>p1' & a1,b1 '||' p1,p1'& a1,p1 '||' p1,b1 & a1,p1' '||' p1',b1);
  reconsider p=p1,p'=p1' as Element of WAS;
    p<>p' & a,b // p,p'& a,p // p,b & a,p' // p',b by A9,Lm15;
  hence ex p,p' being Element of WAS st
  p<>p' & a,b // p,p'& a,p // p,b & a,p' // p',b; end;
hence thesis by A6,A7,Lm9; end;
thus for a,b,b',p,p',c being Element of WAS st a,b // b,c &
b,b' // p,p' & b,p // p,b'& b,p' // p',b' holds a,b' // b',c proof
let a,b,b',p,p',c be Element of WAS such that A10: a,b // b,c &
b,b' // p,p' & b,p // p,b'& b,p' // p',b'; reconsider a1=a,b1=b,b1'=b',p1=p,
p1'=p',c1=c as Element of AFV0; a1,b1 '||' b1,c1 &
b1,b1' '||' p1,p1' & b1,p1 '||' p1,b1' & b1,p1' '||' p1',b1' by A10,Lm15;
then a1,b1' '||' b1',c1 by Lm10; hence thesis by Lm15; end;
thus for a,b,b',c being Element of WAS st a<>c & b<>b' &
a,b // b,c & a,b' // b',c holds ex p,p' being Element of WAS st
p<>p' & b,b' // p,p'& b,p // p,b' & b,p' // p',b' proof
let a,b,b',c be Element of WAS such that A11: a<>c & b<>b' and
A12: a,b // b,c & a,b' // b',c; reconsider a1=a,b1=b,b1'=b',c1=c as Element
of the carrier of AFV0; a1,b1 '||' b1,c1 & a1,b1' '||' b1',c1 by A12,Lm15;
then consider p1,p1' being Element of AFV0 such that
A13: p1<>p1' & b1,b1' '||' p1,p1' & b1,p1 '||' p1,b1' & b1,p1' '||' p1',b1'
by A11,Lm11; reconsider p=p1,p'=p1' as Element of WAS;
  p<>p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' by A13,Lm15;
hence thesis; end;
thus for a,b,c,p,p',q,q' being Element of WAS st
(a,b // p,p' & a,c // q,q' & a,p // p,b &
 a,q // q,c & a,p' // p',b & a,q' // q',c) holds ex
 r,r' being Element of WAS st
 b,c // r,r' & b,r // r,c & b,r' // r',c proof
 let a,b,c,p,p',q,q' be Element of WAS such that
 A14: a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b &
 a,q' // q',c; reconsider a1=a,b1=b,c1=c,p1=p,p1'=p',q1=q,q1'=q' as Element
 of the carrier of AFV0; a1,b1 '||' p1,p1' & a1,c1 '||' q1,q1' &
 a1,p1 '||' p1,b1 & a1,q1 '||' q1,c1 & a1,p1' '||' p1',b1 & a1,q1' '||' q1',c1
 by A14,Lm15; then consider r1,r1' being Element of AFV0 such
 that A15: b1,c1 '||' r1,r1' & b1,r1 '||' r1,c1 & b1,r1' '||' r1',c1 by Lm12;
 reconsider r=r1,r'=r1' as Element of WAS;
   b,c // r,r' & b,r // r,c & b,r' // r',c by A15,Lm15; hence thesis; end;
end;

definition let IT be non empty AffinStruct;
 canceled;

  attr IT is WeakAffSegm-like means :Def2:
(for a,b being Element of IT holds a,b // b,a) &
(for a,b being Element of IT st a,b // a,a holds a=b) &
(for a,b,c,d,p,q being Element of IT st a,b // p,q &
  c,d // p,q holds a,b // c,d) &
(for a,c being Element of IT ex b being Element of the carrier
 of IT st a,b // b,c) &
(for a,a',b,b',p being Element of IT st a<>a' & b<>b'&
 p,a // p,a' & p,b // p,b' holds a,b // a',b') &
(for a,b being Element of IT holds a=b or
 ex c being Element of IT st ( a<>c & a,b // b,c) or
 ex p,p' being Element of IT st
             (p<>p' & a,b // p,p' & a,p // p,b & a,p' // p',b)) &
(for a,b,b',p,p',c being Element of IT st a,b // b,c &
 b,b' // p,p' & b,p // p,b' & b,p' // p',b' holds a,b' // b',c) &
(for a,b,b',c being Element of IT st a<>c & b<>b' & a,b // b,c &
 a,b' // b',c holds ex p,p' being Element of IT st
 p<>p' & b,b' // p,p'& b,p // p,b' & b,p' // p',b') &
(for a,b,c,p,p',q,q' being Element of IT st
 (a,b // p,p' & a,c // q,q' & a,p // p,b &
  a,q // q,c & a,p' // p',b & a,q' // q',c) holds ex
  r,r' being Element of IT st
    b,c // r,r' & b,r // r,c & b,r' // r',c);
end;

definition
 cluster strict non trivial WeakAffSegm-like (non empty AffinStruct);
  existence
   proof
      WAS is WeakAffSegm-like non trivial by Def2,Lm16,REALSET1:def 20;
    hence thesis;
   end;
end;

definition
  mode WeakAffSegm is non trivial WeakAffSegm-like (non empty AffinStruct);
end;

::
::         PROPERTIES OF RELATION OF CONGRUENCE OF THE CARRIER
::

reserve AFV for WeakAffSegm;
reserve a,b,b',b'',c,d,p,p'
 for Element of AFV;

theorem Th1: a,b // a,b
 proof a,b // b,a by Def2; hence thesis by Def2; end;

theorem Th2: a,b // c,d implies c,d // a,b
 proof assume A1: a,b // c,d; c,d // c,d by Th1;
        hence thesis by A1,Def2; end;

theorem Th3: a,b // c,d implies a,b // d,c
 proof assume A1: a,b // c,d; d,c // c,d by Def2;
 hence thesis by A1,Def2; end;

theorem Th4: a,b // c,d implies b,a // c,d
 proof assume a,b // c,d; then c,d // a,b by Th2;
 then c,d // b,a by Th3; hence thesis by Th2; end;

theorem Th5:  for a,b holds a,a // b,b
 proof let a,b;
    now assume A1: a<>b; consider c such that A2: a,c // c,b by Def2;
    c,a // c,b by A2,Th4; hence thesis by A1,Def2;end;
 hence thesis by Def2; end;

theorem Th6: a,b // c,c implies a=b
 proof assume A1: a,b // c,c; a,a // c,c by Th5;
 then a,b // a,a by A1,Def2; hence thesis by Def2; end;

theorem Th7: a,b // p,p' & a,b // b,c & a,p // p,b &
         a,p' // p',b implies a=c
 proof assume that A1: a,b // p,p' and
        A2: a,b // b,c and A3: a,p // p,b and A4: a,p' // p',b;
 A5: b,a // p,p' by A1,Th4; p,b // a,p by A3,Th2;
 then p,b // p,a by Th3; then A6: b,p // p,a by Th4;
   p',b // a,p' by A4,Th2; then p',b // p',a by Th3;
 then b,p' // p',a by Th4; then a,a // a,c by A2,A5,A6,Def2;
 then a,c // a,a by Th2; hence thesis by Def2; end;

theorem a,b' // a,b'' & a,b // a,b''
        implies b=b' or b=b'' or b'=b''
proof assume that A1: a,b' // a,b'' and A2: a,b // a,b'';
    now assume that A3: b'<>b'' and A4: b<>b''; b',b // b'',b'' by A1,A2,A3,A4,
Def2; hence thesis by Th6; end;
 hence thesis; end;

::
::          RELATION OF MAXIMAL DISTANCE AND MIDPOINT RELATION
::

definition let AFV;let a,b; canceled;

pred MDist a,b means
 :Def4: ex p,p' st p<>p' & a,b // p,p' & a,p // p,b & a,p' // p',b;
 end;

definition let AFV; let a,b,c;
  pred Mid a,b,c means
    (a=b & b=c & a=c) or (a=c & MDist a,b) or (a<>c & a,b // b,c);
end;

canceled 2;

theorem a<>b & not MDist a,b implies ex c st ( a<>c & a,b // b,c )
 proof assume that A1: a<>b and A2: not MDist a,b;
    a=b or ex c st ( a<>c & a,b // b,c ) or ex p,p' st ( p<>p'&
        a,b // p,p' & a,p // p,b & a,p' // p',b) by Def2;
 hence thesis by A1,A2,Def4; end;

theorem MDist a,b & a,b // b,c implies a=c
 proof assume that A1: MDist a,b and A2: a,b // b,c;
 consider p,p' such that p<>p' and
  A3: a,b // p,p' and A4: a,p // p,b and A5: a,p' // p',b by A1,Def4;
 thus thesis by A2,A3,A4,A5,Th7; end;

theorem MDist a,b implies a<>b
 proof assume MDist a,b; then consider p,p' such that A1: p<>p' and
  A2: a,b // p,p' and a,p // p,b and a,p' // p',b by Def4;
     now assume a=b; then p,p' // a,a by A2,Th2;
   hence contradiction by A1,Th6; end;
hence thesis; end;

Back to top