Copyright (c) 1990 Association of Mizar Users
environ vocabulary AFVECT0, RELAT_1, ANALOAF, PARSP_1, DIRAF, REALSET1, AFVECT01; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, STRUCT_0, ANALOAF, DIRAF, AFVECT0, RELSET_1, REALSET1; constructors AFVECT0, DIRAF, DOMAIN_1, MEMBERED, XBOOLE_0; clusters AFVECT0, STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0; requirements SUBSET, BOOLE; theorems ZFMISC_1, AFVECT0, STRUCT_0, ANALOAF, REALSET1, DIRAF; schemes RELSET_1; begin reserve AFV for WeakAffVect; reserve a,a',b,b',c,d,p,p',q,q',r,r' for Element of AFV; definition let A be non empty set, C be Relation of [:A,A:]; cluster AffinStruct(#A,C#) -> non empty; coherence by STRUCT_0:def 1; end; Lm1: a,b '||' b,c & a<>c implies a,b // b,c proof assume A1: a,b '||' b,c & a<>c; now assume a,b // c,b; then b,a // b,c by AFVECT0:8; hence contradiction by A1,AFVECT0:5; end; hence thesis by A1,DIRAF:def 4; end; Lm2: a,b // b,a iff ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b proof A1: now assume A2: a,b // b,a; A3: now assume A4: a=b; take p=a,q=a; a,b // p,q & a,p // p,b & a,q // q,b by A4,AFVECT0:3; hence a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by DIRAF:def 4; end; now assume A5: a<>b; consider p such that A6: Mid a,p,b by AFVECT0:24; consider q such that A7: a,b // p,q by AFVECT0:def 1; MDist a,b by A2,A5,AFVECT0:def 2; then MDist p,q by A7,AFVECT0:19; then A8: Mid a,q,b by A6,AFVECT0:28; A9: a,p // p,b by A6,AFVECT0:def 3; A10: a,q // q,b by A8,AFVECT0:def 3; take p,q; thus a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A7,A9,A10,DIRAF:def 4; end; hence ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A3; end; now given p,q such that A11: a,b '||' p,q & a,p '||' p,b & a,q '||' q,b; now assume A12: a<>b; then a,p // p,b & a,q // q,b by A11,Lm1; then A13: Mid a,p,b & Mid a,q,b by AFVECT0:def 3; A14: now assume p=q; then a,b // p,p by A11,DIRAF:def 4; hence contradiction by A12,AFVECT0:def 1; end; now assume A15: MDist p,q; a,b // p,q or a,b // q,p by A11,DIRAF:def 4; then p,q // a,b or q,p // a,b by AFVECT0:4; then MDist a,b by A15,AFVECT0:19; hence a,b // b,a by AFVECT0:def 2; end; hence a,b // b,a by A13,A14,AFVECT0:25; end; hence a,b // b,a by AFVECT0:3; end; hence thesis by A1; end; Lm3: a,b '||' c,d implies b,a '||' c,d proof assume a,b '||' c,d; then a,b // c,d or a,b // d,c by DIRAF:def 4; then b,a // d,c or b,a // c,d by AFVECT0:8; hence thesis by DIRAF:def 4; end; Lm4: a,b '||' b,a proof a,b // a,b by AFVECT0:2; hence thesis by DIRAF:def 4; end; Lm5: a,b '||' p,p implies a=b proof assume a,b '||' p,p; then a,b // p,p by DIRAF:def 4; hence thesis by AFVECT0:def 1; end; Lm6: for a,b,c,d,p,q holds a,b '||' p,q & c,d '||' p,q implies a,b '||' c,d proof let a,b,c,d,p,q; assume a,b '||' p,q & c,d '||' p,q; then (a,b // p,q & c,d // p,q) or ( a,b // p,q & c,d // q,p) or (a,b // q,p & c,d // p,q) or (a,b // q,p & c,d // q,p) by DIRAF:def 4; then a,b // c,d or (a,b // p,q & d,c // p,q) or (a,b // q,p & d,c // q,p) by AFVECT0:8,def 1; then a,b // c,d or a,b // d,c by AFVECT0:def 1; hence thesis by DIRAF:def 4; end; Lm7: ex b st a,b '||' b,c proof consider b such that A1: a,b // b,c by AFVECT0:def 1; take b; thus a,b '||' b,c by A1,DIRAF:def 4; end; Lm8: for a,a',b,b',p st a<>a' & b<>b' & p,a '||' p,a' & p,b '||' p,b' holds a,b '||' a',b' proof let a,a',b,b',p; assume a<>a' & b<>b' & p,a '||' p,a' & p,b '||' p,b'; then a<>a' & b<>b' & a,p '||' p,a' & b,p '||' p,b' by Lm3; then a,p // p,a' & b,p // p,b' by Lm1; then Mid a,p,a' & Mid b,p,b' by AFVECT0:def 3; then a,b // b',a' by AFVECT0:30; hence thesis by DIRAF:def 4; end; Lm9: a=b or ex c st (a<>c & a,b '||' b,c) or ex p,p' st (p<>p' & a,b '||' p,p' & a,p '||' p,b & a,p' '||' p',b) proof consider c such that A1: a,b // b,c by AFVECT0:def 1; A2: now assume a=c; then consider p,p' such that A3: a,b '||' p,p' & a,p '||' p,b & a,p' '||' p',b by A1,Lm2; p=p' implies a=b by A3,Lm5; hence a=b or ex p,p' st p<>p' & a,b '||' p,p' & a,p '||' p,b & a,p' '||' p',b by A3; end; now assume A4: a<>c; a,b '||' b,c by A1,DIRAF:def 4; hence ex c st a<>c & a,b '||' b,c by A4; end; hence thesis by A2; end; Lm10: for a,b,b',p,p',c st a,b '||' b,c & b,b' '||' p,p' & b,p '||' p,b' & b,p' '||' p',b' holds a,b' '||' b',c proof let a,b,b',p,p',c; assume A1: a,b '||' b,c & b,b' '||' p,p' & b,p '||' p,b' & b,p' '||' p',b'; then A2: a,b '||' b,c & b,b' // b',b by Lm2; A3: now assume A4: a,b // b,c; then A5: Mid a,b,c by AFVECT0:def 3; A6: now assume MDist b,b'; then Mid a,b',c by A5,AFVECT0:28; then a,b' // b',c by AFVECT0:def 3; hence thesis by DIRAF:def 4; end; b=b' implies thesis by A4,DIRAF:def 4; hence thesis by A2,A6,AFVECT0:def 2; end; now assume a,b // c,b; then b,a // b,c by AFVECT0:8; then a=c by AFVECT0:5; then a,b' // c,b' by AFVECT0:2; hence thesis by DIRAF:def 4; end; hence thesis by A1,A3,DIRAF:def 4; end; Lm11: for a,b,b',c st a<>c & b<>b' & a,b '||' b,c & a,b' '||' b',c holds ex p,p' st p<>p' & b,b' '||' p,p' & b,p '||' p,b' & b,p' '||' p',b' proof let a,b,b',c; assume A1: a<>c & b<>b' & a,b '||' b,c & a,b' '||' b',c; then b<>b' & a,b // b,c & a,b' // b',c by Lm1; then b<>b' & Mid a,b,c & Mid a,b',c by AFVECT0:def 3; then b<>b' & MDist b, b' by AFVECT0:25; then b,b' // b',b by AFVECT0:def 2; then consider p,p' such that A2: b,b' '||' p,p' & b,p '||' p,b' & b,p' '||' p',b' by Lm2; p<>p' implies thesis by A2; hence thesis by A1,A2,Lm5; end; Lm12: for a,b,c,p,p',q,q' st (a,b '||' p,p' & a,c '||' q,q' & a,p '||' p,b & a,q '||' q,c & a,p' '||' p',b & a,q' '||' q',c) holds ex r,r' st b,c '||' r,r' & b,r '||' r,c & b,r' '||' r',c proof let a,b,c,p,p',q,q'; assume a,b '||' p,p' & a,c '||' q,q' & a,p '||' p,b & a,q '||' q,c & a,p' '||' p',b & a,q' '||' q',c; then a,b // b,a & a,c // c,a by Lm2; then b,c // c,b by AFVECT0:13; hence thesis by Lm2; end; consider AFV0 being WeakAffVect; set X = the carrier of AFV0; set XX = [:X,X:]; defpred P[set,set] means ex a,b,c,d being Element of X st $1=[a,b] & $2=[c,d] & a,b '||' c,d; consider P being Relation of XX,XX such that Lm13: for x,y being set holds [x,y] in P iff x in XX & y in XX & P[x,y] from Rel_On_Set_Ex; Lm14: for a,b,c,d being Element of X holds [[a,b],[c,d]] in P iff a,b '||' c,d proof let a,b,c,d be Element of X; A1: [[a,b],[c,d]] in P implies a,b '||' c,d proof assume [[a,b],[c,d]] in P; then consider a',b',c',d' being Element of X such that A2: [a,b]=[a',b'] & [c,d]=[c',d'] and A3: a',b' '||' c',d' by Lm13; a=a' & b=b' & c = c' & d=d' by A2,ZFMISC_1:33; hence thesis by A3; end; [a,b] in XX & [c,d] in XX by ZFMISC_1:def 2; hence thesis by A1,Lm13; end; set WAS = AffinStruct(#the carrier of AFV0,P#); Lm15: for a,b,c,d being Element of AFV0, a',b',c',d' being Element of the carrier of WAS st a=a' & b=b' & c =c' & d=d' holds a,b '||' c,d iff a',b' // c',d' proof let a,b,c,d be Element of AFV0, a',b',c',d' be Element of the carrier of WAS such that A1: a=a' & b=b' & c =c' & d=d'; A2: now assume a,b '||' c,d; then [[a,b],[c,d]] in the CONGR of WAS by Lm14; hence a',b' // c',d' by A1,ANALOAF:def 2; end; now assume a',b' // c',d'; then [[a',b'],[c',d']] in P by ANALOAF:def 2; hence a,b '||' c,d by A1,Lm14; end; hence thesis by A2; end; Lm16:now thus ex a',b' being Element of WAS st a'<>b' by REALSET1:def 20; thus for a',b' being Element of WAS holds a',b' // b',a' proof let a',b' be Element of WAS; reconsider a=a',b=b' as Element of the carrier of AFV0; a,b '||' b,a by Lm4; hence thesis by Lm15; end; thus for a',b' being Element of WAS st a',b' // a',a' holds a'=b' proof let a',b' be Element of WAS such that A1: a',b' // a',a'; reconsider a=a',b=b' as Element of AFV0 ; a,b '||' a,a by A1,Lm15; hence thesis by Lm5; end; thus for a,b,c,d,p,q being Element of WAS st a,b // p,q & c,d // p,q holds a,b // c,d proof let a,b,c,d,p,q be Element of the carrier of WAS such that A2: a,b // p,q & c,d // p,q; reconsider a1=a,b1=b,c1=c, d1=d,p1=p,q1=q as Element of AFV0; a1,b1 '||' p1,q1 & c1,d1 '||' p1,q1 by A2,Lm15; then a1,b1 '||' c1,d1 by Lm6; hence thesis by Lm15; end; thus for a,c being Element of WAS ex b being Element of the carrier of WAS st a,b // b,c proof let a,c be Element of WAS; reconsider a1=a,c1=c as Element of AFV0; consider b1 being Element of AFV0 such that A3: a1,b1 '||' b1,c1 by Lm7; reconsider b=b1 as Element of WAS; a,b // b,c by A3,Lm15; hence thesis; end; thus for a,a',b,b',p being Element of WAS st a<>a' & b<>b'& p,a // p,a' & p,b // p,b' holds a,b // a',b' proof let a,a',b,b',p be Element of WAS such that A4: a<>a' & b<>b' and A5: p,a // p,a' & p,b // p,b'; reconsider a1=a,a1'=a',b1=b,b1'=b',p1=p as Element of AFV0; p1,a1 '||' p1,a1' & p1,b1 '||' p1,b1' by A5,Lm15; then a1,b1 '||' a1',b1' by A4,Lm8; hence thesis by Lm15; end; thus for a,b being Element of WAS holds a=b or ex c being Element of WAS st ( a<>c & a,b // b,c) or ex p,p' being Element of WAS st (p<>p' & a,b // p,p'& a,p // p,b & a,p' // p',b) proof let a,b be Element of WAS such that A6: not a=b; reconsider a1=a,b1=b as Element of AFV0; A7: now given c1 being Element of AFV0 such that A8: a1<>c1 & a1,b1 '||' b1,c1; reconsider c =c1 as Element of the carrier of WAS; a<>c & a,b // b,c by A8,Lm15; hence ex c being Element of WAS st ( a<>c & a,b // b,c); end; now given p1,p1' being Element of AFV0 such that A9: (p1<>p1' & a1,b1 '||' p1,p1'& a1,p1 '||' p1,b1 & a1,p1' '||' p1',b1); reconsider p=p1,p'=p1' as Element of WAS; p<>p' & a,b // p,p'& a,p // p,b & a,p' // p',b by A9,Lm15; hence ex p,p' being Element of WAS st p<>p' & a,b // p,p'& a,p // p,b & a,p' // p',b; end; hence thesis by A6,A7,Lm9; end; thus for a,b,b',p,p',c being Element of WAS st a,b // b,c & b,b' // p,p' & b,p // p,b'& b,p' // p',b' holds a,b' // b',c proof let a,b,b',p,p',c be Element of WAS such that A10: a,b // b,c & b,b' // p,p' & b,p // p,b'& b,p' // p',b'; reconsider a1=a,b1=b,b1'=b',p1=p, p1'=p',c1=c as Element of AFV0; a1,b1 '||' b1,c1 & b1,b1' '||' p1,p1' & b1,p1 '||' p1,b1' & b1,p1' '||' p1',b1' by A10,Lm15; then a1,b1' '||' b1',c1 by Lm10; hence thesis by Lm15; end; thus for a,b,b',c being Element of WAS st a<>c & b<>b' & a,b // b,c & a,b' // b',c holds ex p,p' being Element of WAS st p<>p' & b,b' // p,p'& b,p // p,b' & b,p' // p',b' proof let a,b,b',c be Element of WAS such that A11: a<>c & b<>b' and A12: a,b // b,c & a,b' // b',c; reconsider a1=a,b1=b,b1'=b',c1=c as Element of the carrier of AFV0; a1,b1 '||' b1,c1 & a1,b1' '||' b1',c1 by A12,Lm15; then consider p1,p1' being Element of AFV0 such that A13: p1<>p1' & b1,b1' '||' p1,p1' & b1,p1 '||' p1,b1' & b1,p1' '||' p1',b1' by A11,Lm11; reconsider p=p1,p'=p1' as Element of WAS; p<>p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' by A13,Lm15; hence thesis; end; thus for a,b,c,p,p',q,q' being Element of WAS st (a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c) holds ex r,r' being Element of WAS st b,c // r,r' & b,r // r,c & b,r' // r',c proof let a,b,c,p,p',q,q' be Element of WAS such that A14: a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c; reconsider a1=a,b1=b,c1=c,p1=p,p1'=p',q1=q,q1'=q' as Element of the carrier of AFV0; a1,b1 '||' p1,p1' & a1,c1 '||' q1,q1' & a1,p1 '||' p1,b1 & a1,q1 '||' q1,c1 & a1,p1' '||' p1',b1 & a1,q1' '||' q1',c1 by A14,Lm15; then consider r1,r1' being Element of AFV0 such that A15: b1,c1 '||' r1,r1' & b1,r1 '||' r1,c1 & b1,r1' '||' r1',c1 by Lm12; reconsider r=r1,r'=r1' as Element of WAS; b,c // r,r' & b,r // r,c & b,r' // r',c by A15,Lm15; hence thesis; end; end; definition let IT be non empty AffinStruct; canceled; attr IT is WeakAffSegm-like means :Def2: (for a,b being Element of IT holds a,b // b,a) & (for a,b being Element of IT st a,b // a,a holds a=b) & (for a,b,c,d,p,q being Element of IT st a,b // p,q & c,d // p,q holds a,b // c,d) & (for a,c being Element of IT ex b being Element of the carrier of IT st a,b // b,c) & (for a,a',b,b',p being Element of IT st a<>a' & b<>b'& p,a // p,a' & p,b // p,b' holds a,b // a',b') & (for a,b being Element of IT holds a=b or ex c being Element of IT st ( a<>c & a,b // b,c) or ex p,p' being Element of IT st (p<>p' & a,b // p,p' & a,p // p,b & a,p' // p',b)) & (for a,b,b',p,p',c being Element of IT st a,b // b,c & b,b' // p,p' & b,p // p,b' & b,p' // p',b' holds a,b' // b',c) & (for a,b,b',c being Element of IT st a<>c & b<>b' & a,b // b,c & a,b' // b',c holds ex p,p' being Element of IT st p<>p' & b,b' // p,p'& b,p // p,b' & b,p' // p',b') & (for a,b,c,p,p',q,q' being Element of IT st (a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c) holds ex r,r' being Element of IT st b,c // r,r' & b,r // r,c & b,r' // r',c); end; definition cluster strict non trivial WeakAffSegm-like (non empty AffinStruct); existence proof WAS is WeakAffSegm-like non trivial by Def2,Lm16,REALSET1:def 20; hence thesis; end; end; definition mode WeakAffSegm is non trivial WeakAffSegm-like (non empty AffinStruct); end; :: :: PROPERTIES OF RELATION OF CONGRUENCE OF THE CARRIER :: reserve AFV for WeakAffSegm; reserve a,b,b',b'',c,d,p,p' for Element of AFV; theorem Th1: a,b // a,b proof a,b // b,a by Def2; hence thesis by Def2; end; theorem Th2: a,b // c,d implies c,d // a,b proof assume A1: a,b // c,d; c,d // c,d by Th1; hence thesis by A1,Def2; end; theorem Th3: a,b // c,d implies a,b // d,c proof assume A1: a,b // c,d; d,c // c,d by Def2; hence thesis by A1,Def2; end; theorem Th4: a,b // c,d implies b,a // c,d proof assume a,b // c,d; then c,d // a,b by Th2; then c,d // b,a by Th3; hence thesis by Th2; end; theorem Th5: for a,b holds a,a // b,b proof let a,b; now assume A1: a<>b; consider c such that A2: a,c // c,b by Def2; c,a // c,b by A2,Th4; hence thesis by A1,Def2;end; hence thesis by Def2; end; theorem Th6: a,b // c,c implies a=b proof assume A1: a,b // c,c; a,a // c,c by Th5; then a,b // a,a by A1,Def2; hence thesis by Def2; end; theorem Th7: a,b // p,p' & a,b // b,c & a,p // p,b & a,p' // p',b implies a=c proof assume that A1: a,b // p,p' and A2: a,b // b,c and A3: a,p // p,b and A4: a,p' // p',b; A5: b,a // p,p' by A1,Th4; p,b // a,p by A3,Th2; then p,b // p,a by Th3; then A6: b,p // p,a by Th4; p',b // a,p' by A4,Th2; then p',b // p',a by Th3; then b,p' // p',a by Th4; then a,a // a,c by A2,A5,A6,Def2; then a,c // a,a by Th2; hence thesis by Def2; end; theorem a,b' // a,b'' & a,b // a,b'' implies b=b' or b=b'' or b'=b'' proof assume that A1: a,b' // a,b'' and A2: a,b // a,b''; now assume that A3: b'<>b'' and A4: b<>b''; b',b // b'',b'' by A1,A2,A3,A4, Def2; hence thesis by Th6; end; hence thesis; end; :: :: RELATION OF MAXIMAL DISTANCE AND MIDPOINT RELATION :: definition let AFV;let a,b; canceled; pred MDist a,b means :Def4: ex p,p' st p<>p' & a,b // p,p' & a,p // p,b & a,p' // p',b; end; definition let AFV; let a,b,c; pred Mid a,b,c means (a=b & b=c & a=c) or (a=c & MDist a,b) or (a<>c & a,b // b,c); end; canceled 2; theorem a<>b & not MDist a,b implies ex c st ( a<>c & a,b // b,c ) proof assume that A1: a<>b and A2: not MDist a,b; a=b or ex c st ( a<>c & a,b // b,c ) or ex p,p' st ( p<>p'& a,b // p,p' & a,p // p,b & a,p' // p',b) by Def2; hence thesis by A1,A2,Def4; end; theorem MDist a,b & a,b // b,c implies a=c proof assume that A1: MDist a,b and A2: a,b // b,c; consider p,p' such that p<>p' and A3: a,b // p,p' and A4: a,p // p,b and A5: a,p' // p',b by A1,Def4; thus thesis by A2,A3,A4,A5,Th7; end; theorem MDist a,b implies a<>b proof assume MDist a,b; then consider p,p' such that A1: p<>p' and A2: a,b // p,p' and a,p // p,b and a,p' // p',b by Def4; now assume a=b; then p,p' // a,a by A2,Th2; hence contradiction by A1,Th6; end; hence thesis; end;