environ vocabulary AFVECT0, RELAT_1, ANALOAF, PARSP_1, DIRAF, REALSET1, AFVECT01; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, STRUCT_0, ANALOAF, DIRAF, AFVECT0, RELSET_1, REALSET1; constructors AFVECT0, DIRAF, DOMAIN_1, MEMBERED, XBOOLE_0; clusters AFVECT0, STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0; requirements SUBSET, BOOLE; begin reserve AFV for WeakAffVect; reserve a,a',b,b',c,d,p,p',q,q',r,r' for Element of AFV; definition let A be non empty set, C be Relation of [:A,A:]; cluster AffinStruct(#A,C#) -> non empty; end; definition let IT be non empty AffinStruct; canceled; attr IT is WeakAffSegm-like means :: AFVECT01:def 2 (for a,b being Element of IT holds a,b // b,a) & (for a,b being Element of IT st a,b // a,a holds a=b) & (for a,b,c,d,p,q being Element of IT st a,b // p,q & c,d // p,q holds a,b // c,d) & (for a,c being Element of IT ex b being Element of the carrier of IT st a,b // b,c) & (for a,a',b,b',p being Element of IT st a<>a' & b<>b'& p,a // p,a' & p,b // p,b' holds a,b // a',b') & (for a,b being Element of IT holds a=b or ex c being Element of IT st ( a<>c & a,b // b,c) or ex p,p' being Element of IT st (p<>p' & a,b // p,p' & a,p // p,b & a,p' // p',b)) & (for a,b,b',p,p',c being Element of IT st a,b // b,c & b,b' // p,p' & b,p // p,b' & b,p' // p',b' holds a,b' // b',c) & (for a,b,b',c being Element of IT st a<>c & b<>b' & a,b // b,c & a,b' // b',c holds ex p,p' being Element of IT st p<>p' & b,b' // p,p'& b,p // p,b' & b,p' // p',b') & (for a,b,c,p,p',q,q' being Element of IT st (a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c) holds ex r,r' being Element of IT st b,c // r,r' & b,r // r,c & b,r' // r',c); end; definition cluster strict non trivial WeakAffSegm-like (non empty AffinStruct); end; definition mode WeakAffSegm is non trivial WeakAffSegm-like (non empty AffinStruct); end; :: :: PROPERTIES OF RELATION OF CONGRUENCE OF THE CARRIER :: reserve AFV for WeakAffSegm; reserve a,b,b',b'',c,d,p,p' for Element of AFV; theorem :: AFVECT01:1 a,b // a,b; theorem :: AFVECT01:2 a,b // c,d implies c,d // a,b; theorem :: AFVECT01:3 a,b // c,d implies a,b // d,c; theorem :: AFVECT01:4 a,b // c,d implies b,a // c,d; theorem :: AFVECT01:5 for a,b holds a,a // b,b; theorem :: AFVECT01:6 a,b // c,c implies a=b; theorem :: AFVECT01:7 a,b // p,p' & a,b // b,c & a,p // p,b & a,p' // p',b implies a=c; theorem :: AFVECT01:8 a,b' // a,b'' & a,b // a,b'' implies b=b' or b=b'' or b'=b''; :: :: RELATION OF MAXIMAL DISTANCE AND MIDPOINT RELATION :: definition let AFV;let a,b; canceled; pred MDist a,b means :: AFVECT01:def 4 ex p,p' st p<>p' & a,b // p,p' & a,p // p,b & a,p' // p',b; end; definition let AFV; let a,b,c; pred Mid a,b,c means :: AFVECT01:def 5 (a=b & b=c & a=c) or (a=c & MDist a,b) or (a<>c & a,b // b,c); end; canceled 2; theorem :: AFVECT01:11 a<>b & not MDist a,b implies ex c st ( a<>c & a,b // b,c ); theorem :: AFVECT01:12 MDist a,b & a,b // b,c implies a=c; theorem :: AFVECT01:13 MDist a,b implies a<>b;