Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Grzegorz Lewandowski,
- Krzysztof Prazmowski,
and
- Bozena Lewandowska
- Received September 24, 1990
- MML identifier: AFVECT0
- [
Mizar article,
MML identifier index
]
environ
vocabulary ANALOAF, REALSET1, TDGROUP, DIRAF, BINOP_1, FUNCT_1, RLVECT_1,
ARYTM_1, VECTSP_1, MCART_1, RELAT_1, AFVECT0;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, REALSET1, STRUCT_0, ANALOAF,
TDGROUP, FUNCT_1, FUNCT_2, MCART_1, BINOP_1, RELAT_1, VECTSP_1, RLVECT_1;
constructors TDGROUP, BINOP_1, DOMAIN_1, MEMBERED, XBOOLE_0;
clusters TDGROUP, RELSET_1, STRUCT_0, SUBSET_1, MEMBERED, ZFMISC_1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin
definition let IT be non empty AffinStruct;
attr IT is WeakAffVect-like means
:: AFVECT0:def 1
(for a,b,c being Element of IT st a,b // c,c holds a=b) &
(for a,b,c,d,p,q being Element of IT st
a,b // p,q & c,d // p,q holds a,b // c,d) &
(for a,b,c being Element of IT
ex d being Element of IT st a,b // c,d) &
(for a,b,c,a',b',c' being Element of IT st
a,b // a',b' & a,c // a',c' holds b,c // b',c') &
(for a,c being Element of IT
ex b being Element of IT st a,b // b,c) &
(for a,b,c,d being Element of IT st
a,b // c,d holds a,c // b,d);
end;
definition
cluster strict non trivial WeakAffVect-like (non empty AffinStruct);
end;
definition
mode WeakAffVect is non trivial WeakAffVect-like (non empty AffinStruct);
end;
definition
cluster AffVect-like -> WeakAffVect-like (non empty AffinStruct);
end;
reserve AFV for WeakAffVect;
reserve a,b,c,d,e,f,a',b',c',d',f',p,q,r,o,x''
for Element of AFV;
::
:: Properties of Relation of Congruence of Vectors
::
canceled;
theorem :: AFVECT0:2
a,b // a,b;
theorem :: AFVECT0:3
a,a // a,a;
theorem :: AFVECT0:4
a,b // c,d implies c,d // a,b;
theorem :: AFVECT0:5
a,b // a,c implies b = c;
theorem :: AFVECT0:6
a,b // c,d & a,b // c,d' implies d = d';
theorem :: AFVECT0:7
for a,b holds a,a // b,b;
theorem :: AFVECT0:8
a,b // c,d implies b,a // d,c;
theorem :: AFVECT0:9
a,b // c,d & a,c // b',d implies b = b';
theorem :: AFVECT0:10
b,c // b',c' & a,d // b,c & a,d' // b',c' implies d = d';
theorem :: AFVECT0:11
a,b // a',b' & c,d // b,a & c,d' // b',a' implies d = d';
theorem :: AFVECT0:12
a,b // a',b' & c,d // c',d' & b,f // c,d & b',f' // c',d'
implies a,f // a',f';
theorem :: AFVECT0:13
a,b // a',b' & a,c // c',b' implies b,c // c',a';
::
:: Relation of Maximal Distance
::
definition let AFV;let a,b; pred MDist a,b means
:: AFVECT0:def 2
a,b // b,a & a <> b;
irreflexivity;
symmetry;
end;
canceled 2;
theorem :: AFVECT0:16
ex a,b st (a<>b & not MDist a,b);
canceled;
theorem :: AFVECT0:18
MDist a,b & MDist a,c implies b = c or MDist b,c;
theorem :: AFVECT0:19
MDist a,b & a,b // c,d implies MDist c,d;
::
:: Midpoint Relation
::
definition let AFV; let a,b,c;
pred Mid a,b,c means
:: AFVECT0:def 3
a,b // b,c;
end;
canceled;
theorem :: AFVECT0:21
Mid a,b,c implies Mid c,b,a;
theorem :: AFVECT0:22
Mid a,b,b iff a = b;
theorem :: AFVECT0:23
Mid a,b,a iff a = b or MDist a,b;
theorem :: AFVECT0:24
ex b st Mid a,b,c;
theorem :: AFVECT0:25
Mid a,b,c & Mid a,b',c implies b =b' or MDist b,b';
theorem :: AFVECT0:26
ex c st Mid a,b,c;
theorem :: AFVECT0:27
Mid a,b,c & Mid a,b,c' implies c = c';
theorem :: AFVECT0:28
Mid a,b,c & MDist b,b' implies Mid a,b',c;
theorem :: AFVECT0:29
Mid a,b,c & Mid a,b',c' & MDist b,b' implies c = c';
theorem :: AFVECT0:30
Mid a,p,a' & Mid b,p,b' implies a,b // b',a';
theorem :: AFVECT0:31
Mid a,p,a' & Mid b,q,b' & MDist p,q implies a,b // b',a';
::
:: Point Symmetry
::
definition let AFV; let a,b;
func PSym(a,b) -> Element of AFV means
:: AFVECT0:def 4
Mid b,a,it;
end;
canceled;
theorem :: AFVECT0:33
PSym(p,a) = b iff a,p // p,b;
canceled;
theorem :: AFVECT0:35
PSym(p,a) = a iff a = p or MDist a,p;
theorem :: AFVECT0:36
PSym(p,PSym(p,a)) = a;
theorem :: AFVECT0:37
PSym(p,a) = PSym(p,b) implies a = b;
theorem :: AFVECT0:38
ex a st PSym(p,a) = b;
theorem :: AFVECT0:39
a,b // PSym(p,b),PSym(p,a);
theorem :: AFVECT0:40
a,b // c,d iff PSym(p,a),PSym(p,b) // PSym(p,c),PSym(p,d);
theorem :: AFVECT0:41
MDist a,b iff MDist PSym(p,a),PSym(p,b);
theorem :: AFVECT0:42
Mid a,b,c iff Mid PSym(p,a),PSym(p,b),PSym(p,c);
theorem :: AFVECT0:43
PSym(p,a) = PSym(q,a) iff p = q or MDist p,q;
theorem :: AFVECT0:44
PSym(q,PSym(p,PSym(q,a))) = PSym(PSym(q,p),a);
theorem :: AFVECT0:45
PSym(p,PSym(q,a)) = PSym(q,PSym(p,a)) iff p = q or MDist p,q or
MDist q,PSym(p,q);
theorem :: AFVECT0:46
PSym(p,PSym(q,PSym(r,a))) = PSym(r,PSym(q,PSym(p,a)));
theorem :: AFVECT0:47
ex d st PSym(a,PSym(b,PSym(c,p))) = PSym(d,p);
theorem :: AFVECT0:48
ex c st PSym(a,PSym(c,p)) = PSym(c,PSym(b,p));
::
:: Addition on the carrier
::
definition let AFV,o; let a,b;
func Padd(o,a,b) -> Element of AFV means
:: AFVECT0:def 5
o,a // b,it;
end;
definition let AFV,o; let a;
redefine func PSym(o,a);
synonym Pcom(o,a);
end;
definition let AFV,o;
canceled;
func Padd(o) -> BinOp of the carrier of AFV means
:: AFVECT0:def 7
for a,b holds it.(a,b) = Padd(o,a,b);
end;
definition let AFV,o;
func Pcom(o) -> UnOp of the carrier of AFV means
:: AFVECT0:def 8
for a holds it.a = Pcom(o,a);
end;
definition let AFV,o;
func GroupVect(AFV,o) -> strict LoopStr equals
:: AFVECT0:def 9
LoopStr(#the carrier of AFV,Padd(o),o#);
end;
definition let AFV,o;
cluster GroupVect(AFV,o) -> non empty;
end;
canceled 6;
theorem :: AFVECT0:55
the carrier of GroupVect(AFV,o) = the carrier of AFV
& the add of GroupVect(AFV,o) = Padd(o)
& the Zero of GroupVect(AFV,o) = o;
reserve a,b,c for Element of GroupVect(AFV,o);
canceled;
theorem :: AFVECT0:57
for a,b being Element of GroupVect(AFV,o),
a',b' being Element of AFV st a=a' & b=b' holds
a + b = (Padd(o)).(a',b');
definition let AFV,o;
cluster GroupVect(AFV,o) -> Abelian add-associative right_zeroed
right_complementable;
end;
theorem :: AFVECT0:58
for a being Element of GroupVect(AFV,o),
a' being Element of AFV st a=a' holds
-a = (Pcom(o)).a';
theorem :: AFVECT0:59
0.GroupVect(AFV,o) = o;
reserve a,b for Element of GroupVect(AFV,o);
canceled 6;
theorem :: AFVECT0:66
for a ex b st b + b = a;
definition let AFV,o;
cluster GroupVect(AFV,o) -> Two_Divisible;
end;
::
:: Representation Theorem for Directed Geometrical Bundles
::
reserve AFV for AffVect, o for Element of AFV;
theorem :: AFVECT0:67
for a being Element of GroupVect(AFV,o)
st a + a = 0.(GroupVect(AFV,o)) holds a = 0.(GroupVect(AFV,o));
definition let AFV,o;
cluster GroupVect(AFV,o) -> Fanoian;
end;
definition
cluster strict non trivial Uniquely_Two_Divisible_Group;
end;
definition
mode Proper_Uniquely_Two_Divisible_Group is non trivial
Uniquely_Two_Divisible_Group;
end;
canceled;
theorem :: AFVECT0:69
GroupVect(AFV,o) is Proper_Uniquely_Two_Divisible_Group;
definition let AFV,o;
cluster GroupVect(AFV,o) -> non trivial;
end;
theorem :: AFVECT0:70
for ADG being Proper_Uniquely_Two_Divisible_Group holds
AV(ADG) is AffVect;
definition let ADG be Proper_Uniquely_Two_Divisible_Group;
cluster AV(ADG) -> AffVect-like non trivial;
end;
theorem :: AFVECT0:71
for AFV being strict AffVect
holds (for o being Element of AFV holds
AFV = AV(GroupVect(AFV,o)));
theorem :: AFVECT0:72
for AS being strict AffinStruct holds (AS is AffVect iff
(ex ADG being Proper_Uniquely_Two_Divisible_Group st AS = AV(ADG)));
definition let X,Y be non empty LoopStr;
let f be Function of the carrier of X,the carrier of Y;
pred f is_Iso_of X,Y means
:: AFVECT0:def 10
f is one-to-one & rng(f) = the carrier of Y &
(for a,b being Element of X holds
(f.(a+b) = (f.a)+(f.b) & f.(0.X) = 0.Y & f.(-a) = -(f.a))); end;
definition let X,Y be non empty LoopStr; pred X,Y are_Iso means
:: AFVECT0:def 11
ex f being Function of the carrier of X,the carrier of Y
st f is_Iso_of X,Y; end;
reserve ADG for Proper_Uniquely_Two_Divisible_Group;
reserve f for Function of the carrier of ADG,the carrier of ADG;
canceled 2;
theorem :: AFVECT0:75
for o' being Element of ADG,
o being Element of AV(ADG) st
(for x being Element of ADG holds f.x = o'+x) & o=o'
holds (for a,b being Element of ADG holds
(f.(a+b) =(Padd(o)).(f.a,f.b)
& f.(0.ADG) = 0.(GroupVect(AV(ADG),o))
& f.(-a) = (Pcom(o)).(f.a)));
theorem :: AFVECT0:76
for o' being Element of ADG st
(for b being Element of ADG holds f.b = o'+b)
holds f is one-to-one;
theorem :: AFVECT0:77
for o' being Element of ADG,
o being Element of AV(ADG) st
(for b being Element of ADG holds f.b = o'+b)
holds rng(f) = the carrier of GroupVect(AV(ADG),o);
theorem :: AFVECT0:78
for ADG being Proper_Uniquely_Two_Divisible_Group,
o' being Element of ADG,
o being Element of AV(ADG) st o=o' holds
ADG,GroupVect(AV(ADG),o) are_Iso;
Back to top