Journal of Formalized Mathematics
Volume 14, 2002
University of Bialystok
Copyright (c) 2002
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Robert Milewski
- Received June 27, 2002
- MML identifier: JORDAN14
- [
Mizar article,
MML identifier index
]
environ
vocabulary JORDAN14, FINSEQ_1, BOOLE, PRE_TOPC, RELAT_2, CONNSP_1, RELAT_1,
ARYTM_1, GOBOARD1, EUCLID, MATRIX_1, ABSVALUE, GOBRD13, TOPREAL1,
GOBOARD5, TOPS_1, TREES_1, SPPOL_1, MCART_1, TARSKI, SUBSET_1, SEQM_3,
GOBOARD9, COMPTS_1, JORDAN8, PSCOMP_1, GROUP_1, ARYTM_3, JORDAN11,
JORDAN1H, JORDAN13, TOPREAL2, FINSEQ_4, JORDAN2C;
notation TARSKI, XBOOLE_0, SUBSET_1, GOBOARD5, STRUCT_0, XREAL_0, REAL_1,
NAT_1, BINARITH, ABSVALUE, CARD_4, FINSEQ_1, FINSEQ_4, MATRIX_1,
PRE_TOPC, TOPREAL2, TOPS_1, COMPTS_1, CONNSP_1, EUCLID, TOPREAL1,
GOBOARD1, SPPOL_1, PSCOMP_1, GOBOARD9, JORDAN2C, JORDAN8, GOBRD13,
JORDAN1H, JORDAN11, JORDAN13;
constructors REAL_1, FINSEQ_4, CARD_4, BINARITH, TOPS_1, CONNSP_1, PSCOMP_1,
REALSET1, GOBOARD9, GROUP_1, JORDAN1, JORDAN2C, JORDAN1H, JORDAN8,
JORDAN11, JORDAN13, WSIERP_1, TOPREAL4;
clusters RELSET_1, REVROT_1, SPRECT_2, JORDAN8, TOPREAL1, TOPREAL6, INT_1,
SUBSET_1, PRE_TOPC, SPRECT_3, SPRECT_4, BORSUK_2, JORDAN1A, GOBRD14,
TOPS_1, JORDAN1B, MEMBERED;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin
theorem :: JORDAN14:1
for f be non constant standard special_circular_sequence holds
BDD L~f = RightComp f or BDD L~f = LeftComp f;
theorem :: JORDAN14:2
for f be non constant standard special_circular_sequence holds
UBD L~f = RightComp f or UBD L~f = LeftComp f;
theorem :: JORDAN14:3
for G be Go-board
for f be FinSequence of TOP-REAL 2
for k be Nat holds
1 <= k & k+1 <= len f & f is_sequence_on G
implies left_cell(f,k,G) is closed;
theorem :: JORDAN14:4
for G be Go-board
for p be Point of TOP-REAL 2
for i,j be Nat st 1 <= i & i+1 <= len G & 1 <= j & j+1 <= width G holds
p in Int cell(G,i,j) iff
G*(i,j)`1 < p`1 & p`1 < G*(i+1,j)`1 & G*(i,j)`2 < p`2 & p`2 < G*(i,j+1)`2;
theorem :: JORDAN14:5
for f be non constant standard special_circular_sequence holds
BDD L~f is connected;
definition
let f be non constant standard special_circular_sequence;
cluster BDD L~f -> connected;
end;
definition
let C be Simple_closed_curve;
let n be Nat;
func SpanStart(C,n) -> Point of TOP-REAL 2 equals
:: JORDAN14:def 1
Gauge(C,n)*(X-SpanStart(C,n),Y-SpanStart(C,n));
end;
theorem :: JORDAN14:6
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
Span(C,n)/.1 = SpanStart(C,n);
theorem :: JORDAN14:7
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
SpanStart(C,n) in BDD C;
theorem :: JORDAN14:8
for C be Simple_closed_curve
for n,k be Nat st n is_sufficiently_large_for C holds
1 <= k & k+1 <= len Span(C,n) implies
right_cell(Span(C,n),k,Gauge(C,n)) misses C &
left_cell(Span(C,n),k,Gauge(C,n)) meets C;
theorem :: JORDAN14:9
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
C misses L~Span(C,n);
definition
let C be Simple_closed_curve;
let n be Nat;
cluster Cl RightComp Span(C,n) -> compact;
end;
theorem :: JORDAN14:10
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
C meets LeftComp Span(C,n);
theorem :: JORDAN14:11
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
C misses RightComp Span(C,n);
theorem :: JORDAN14:12
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
C c= LeftComp Span(C,n);
theorem :: JORDAN14:13
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
C c= UBD L~Span(C,n);
theorem :: JORDAN14:14
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
BDD L~Span(C,n) c= BDD C;
theorem :: JORDAN14:15
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
UBD C c= UBD L~Span(C,n);
theorem :: JORDAN14:16
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
RightComp Span(C,n) c= BDD C;
theorem :: JORDAN14:17
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
UBD C c= LeftComp Span(C,n);
theorem :: JORDAN14:18
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
UBD C misses BDD L~Span(C,n);
theorem :: JORDAN14:19
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
UBD C misses RightComp Span(C,n);
theorem :: JORDAN14:20
for C be Simple_closed_curve
for P be Subset of TOP-REAL 2
for n be Nat st n is_sufficiently_large_for C holds
P is_outside_component_of C implies P misses L~Span(C,n);
theorem :: JORDAN14:21
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
UBD C misses L~Span(C,n);
theorem :: JORDAN14:22
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
L~Span(C,n) c= BDD C;
theorem :: JORDAN14:23
for C be Simple_closed_curve
for i,j,k,n be Nat st
n is_sufficiently_large_for C & 1 <= k & k <= len Span(C,n) &
[i,j] in Indices Gauge(C,n) & Span(C,n)/.k = Gauge(C,n)*(i,j) holds
i > 1;
theorem :: JORDAN14:24
for C be Simple_closed_curve
for i,j,k,n be Nat st
n is_sufficiently_large_for C & 1 <= k & k <= len Span(C,n) &
[i,j] in Indices Gauge(C,n) & Span(C,n)/.k = Gauge(C,n)*(i,j) holds
i < len Gauge(C,n);
theorem :: JORDAN14:25
for C be Simple_closed_curve
for i,j,k,n be Nat st
n is_sufficiently_large_for C & 1 <= k & k <= len Span(C,n) &
[i,j] in Indices Gauge(C,n) & Span(C,n)/.k = Gauge(C,n)*(i,j) holds
j > 1;
theorem :: JORDAN14:26
for C be Simple_closed_curve
for i,j,k,n be Nat st
n is_sufficiently_large_for C & 1 <= k & k <= len Span(C,n) &
[i,j] in Indices Gauge(C,n) & Span(C,n)/.k = Gauge(C,n)*(i,j) holds
j < width Gauge(C,n);
theorem :: JORDAN14:27
for C be Simple_closed_curve
for n be Nat st n is_sufficiently_large_for C holds
Y-SpanStart(C,n) < width Gauge(C,n);
theorem :: JORDAN14:28
for C be compact non vertical non horizontal Subset of TOP-REAL 2
for n,m be Nat st m >= n & n >= 1 holds
X-SpanStart(C,m) = 2|^(m-'n)*(X-SpanStart(C,n)-2)+2;
theorem :: JORDAN14:29
for C be compact non vertical non horizontal Subset of TOP-REAL 2
for n,m be Nat st n <= m & n is_sufficiently_large_for C holds
m is_sufficiently_large_for C;
theorem :: JORDAN14:30
for G be Go-board
for f be FinSequence of TOP-REAL 2
for i,j be Nat holds
f is_sequence_on G & f is special & i <= len G & j <= width G implies
cell(G,i,j)\L~f is connected;
theorem :: JORDAN14:31
for C be Simple_closed_curve
for n,k be Nat st n is_sufficiently_large_for C & Y-SpanStart(C,n) <= k &
k <= 2|^(n-'ApproxIndex C)*(Y-InitStart C-'2)+2 holds
cell(Gauge(C,n),X-SpanStart(C,n)-'1,k)\L~Span(C,n) c= BDD L~Span(C,n);
theorem :: JORDAN14:32
for C be Subset of TOP-REAL 2
for n,m,i be Nat st m <= n & 1 < i & i+1 < len Gauge(C,m) holds
2|^(n-'m)*(i-2)+2+1 < len Gauge(C,n);
theorem :: JORDAN14:33
for C be Simple_closed_curve
for n,m be Nat st n is_sufficiently_large_for C & n <= m holds
RightComp Span(C,n) meets RightComp Span(C,m);
theorem :: JORDAN14:34
for G be Go-board
for f be FinSequence of TOP-REAL 2 st f is_sequence_on G & f is special
for i,j be Nat st i <= len G & j <= width G holds
Int cell(G,i,j) c= (L~f)`;
theorem :: JORDAN14:35
for C be Simple_closed_curve
for n,m be Nat st n is_sufficiently_large_for C & n <= m holds
L~Span(C,m) c= Cl LeftComp(Span(C,n));
theorem :: JORDAN14:36
for C be Simple_closed_curve
for n,m be Nat st n is_sufficiently_large_for C & n <= m holds
RightComp(Span(C,n)) c= RightComp(Span(C,m));
theorem :: JORDAN14:37
for C be Simple_closed_curve
for n,m be Nat st n is_sufficiently_large_for C & n <= m holds
LeftComp(Span(C,m)) c= LeftComp(Span(C,n));
Back to top