Journal of Formalized Mathematics
Volume 13, 2001
University of Bialystok
Copyright (c) 2001
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Andrzej Trybulec
- Received October 7, 2001
- MML identifier: JORDAN1H
- [
Mizar article,
MML identifier index
]
environ
vocabulary COMPTS_1, SPPOL_1, EUCLID, FINSEQ_1, GOBOARD1, PRE_TOPC, BOOLE,
ARYTM_3, RELAT_1, RELAT_2, TRIANG_1, ZF_REFLE, AMI_1, PRALG_1, FUNCT_1,
FUNCT_6, ORDINAL2, TOPREAL1, JORDAN1, PCOMPS_1, METRIC_1, SQUARE_1,
ARYTM_1, FINSEQ_2, COMPLEX1, ABSVALUE, ORDERS_1, ORDERS_2, FINSET_1,
FINSEQ_4, GOBOARD2, CARD_1, FUNCT_5, MCART_1, GOBRD13, TARSKI, PROB_1,
MATRIX_1, TREES_1, INCSP_1, GOBOARD5, SEQM_3, CONNSP_1, SUBSET_1,
GOBOARD9, TOPS_1, JORDAN3, RFINSEQ, FINSEQ_5, JORDAN8, INT_1, GROUP_1,
PSCOMP_1, JORDAN2C, FINSEQ_6, SPRECT_2, JORDAN9, JORDAN1A, JORDAN1H,
ARYTM, PARTFUN1;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, FINSEQ_6, RVSUM_1, GOBOARD5,
STRUCT_0, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, SQUARE_1, NAT_1,
INT_1, BINARITH, ABSVALUE, RELAT_1, RELAT_2, RELSET_1, FUNCT_1, PARTFUN1,
FUNCT_2, CARD_1, CARD_4, FINSET_1, FINSEQ_1, FUNCT_6, PROB_1, PRALG_1,
FINSEQ_2, FINSEQ_4, FINSEQ_5, RFINSEQ, MATRIX_1, METRIC_1, ORDERS_1,
ORDERS_2, TRIANG_1, PRE_TOPC, TOPS_1, COMPTS_1, CONNSP_1, PCOMPS_1,
EUCLID, JORDAN1, SPRECT_2, TOPREAL1, GOBOARD1, GOBOARD2, JORDAN3,
JORDAN2C, SPPOL_1, PSCOMP_1, GOBOARD9, JORDAN8, GOBRD13, JORDAN9,
JORDAN1A;
constructors REAL_1, CARD_4, RFINSEQ, BINARITH, TOPS_1, CONNSP_1, PSCOMP_1,
GOBOARD9, JORDAN8, GOBRD13, GROUP_1, JORDAN9, GOBOARD2, TRIANG_1,
ORDERS_2, AMI_1, JORDAN1, PRALG_1, MATRLIN, JORDAN3, JORDAN2C, SQUARE_1,
WSIERP_1, JORDAN1A, TOPREAL4, SPRECT_1, PROB_1;
clusters PSCOMP_1, RELSET_1, FINSEQ_1, FINSEQ_5, REVROT_1, XREAL_0, GOBOARD9,
JORDAN8, GOBRD13, EUCLID, FINSET_1, POLYNOM1, WAYBEL_2, GOBOARD1,
PRELAMB, TRIANG_1, PUA2MSS1, MSAFREE1, FUNCT_7, PRALG_1, GENEALG1,
GOBOARD2, SPRECT_3, TOPREAL6, INT_1, BORSUK_2, SPRECT_4, SPRECT_1,
MEMBERED, RELAT_1;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin :: Preliminaries
reserve m,k,j,j1,i,i1,i2,n for Nat,
r,s for Real,
C for compact non vertical non horizontal Subset of TOP-REAL 2,
G for Go-board,
p for Point of TOP-REAL 2;
definition
cluster with_non-empty_element set;
end;
definition let D be non empty with_non-empty_element set;
cluster non empty non-empty FinSequence of D*;
end;
definition let D be non empty with_non-empty_elements set;
cluster non empty non-empty FinSequence of D*;
end;
definition let F be non-empty Function-yielding Function;
cluster rngs F -> non-empty;
end;
definition
cluster increasing -> one-to-one FinSequence of REAL;
end;
canceled 3;
theorem :: JORDAN1H:4
for p,q being Point of TOP-REAL 2
holds LSeg(p,q) \ {p,q} is convex;
theorem :: JORDAN1H:5
for p,q being Point of TOP-REAL 2
holds LSeg(p,q) \ {p,q} is connected;
theorem :: JORDAN1H:6
for p,q being Point of TOP-REAL 2 st p <> q
holds p in Cl(LSeg(p,q) \ {p,q});
theorem :: JORDAN1H:7
for p,q being Point of TOP-REAL 2 st p <> q
holds Cl(LSeg(p,q) \ {p,q}) = LSeg(p,q);
theorem :: JORDAN1H:8
for S being Subset of TOP-REAL 2,
p,q be Point of TOP-REAL 2
st p <> q & LSeg(p,q) \ {p,q} c= S
holds LSeg(p,q) c= Cl S;
begin :: Transforming Finite Sets to Finite Sequences
definition
func RealOrd -> Relation of REAL equals
:: JORDAN1H:def 1
{[r,s] : r <= s };
end;
theorem :: JORDAN1H:9
[r,s] in RealOrd implies r <= s;
theorem :: JORDAN1H:10
field RealOrd = REAL;
definition
cluster RealOrd
-> total reflexive antisymmetric transitive being_linear-order;
end;
theorem :: JORDAN1H:11
RealOrd linearly_orders REAL;
theorem :: JORDAN1H:12
for A being finite Subset of REAL
holds SgmX(RealOrd,A) is increasing;
theorem :: JORDAN1H:13
for f being FinSequence of REAL,
A being finite Subset of REAL st A = rng f
holds SgmX(RealOrd,A) = Incr f;
definition let A be finite Subset of REAL;
cluster SgmX(RealOrd,A) -> increasing;
end;
canceled;
theorem :: JORDAN1H:15
for X being non empty set,
A being finite Subset of X,
R be being_linear-order Order of X
holds len SgmX(R,A) = card A;
begin :: On the construction of go boards
theorem :: JORDAN1H:16
for f being FinSequence of TOP-REAL 2
holds X_axis f = proj1*f;
theorem :: JORDAN1H:17
for f being FinSequence of TOP-REAL 2
holds Y_axis f = proj2*f;
definition let D be non empty set; let M be FinSequence of D*;
redefine func Values M -> Subset of D;
end;
definition let D be non empty with_non-empty_elements set;
let M be non empty non-empty FinSequence of D*;
cluster Values M -> non empty;
end;
theorem :: JORDAN1H:18
for D being non empty set, M being (Matrix of D), i st i in Seg width M
holds rng Col(M,i) c= Values M;
theorem :: JORDAN1H:19
for D being non empty set, M being (Matrix of D), i st i in dom M
holds rng Line(M,i) c= Values M;
theorem :: JORDAN1H:20
for G being X_increasing-in-column non empty-yielding Matrix of TOP-REAL 2
holds len G <= card(proj1.:Values G);
theorem :: JORDAN1H:21
for G being X_equal-in-line Matrix of TOP-REAL 2
holds card(proj1.:Values G) <= len G;
theorem :: JORDAN1H:22
for G being X_equal-in-line X_increasing-in-column
non empty-yielding Matrix of TOP-REAL 2
holds len G = card(proj1.:Values G);
theorem :: JORDAN1H:23
for G being Y_increasing-in-line non empty-yielding Matrix of TOP-REAL 2
holds width G <= card(proj2.:Values G);
theorem :: JORDAN1H:24
for G being Y_equal-in-column non empty-yielding Matrix of TOP-REAL 2
holds card(proj2.:Values G) <= width G;
theorem :: JORDAN1H:25
for G being Y_equal-in-column Y_increasing-in-line non empty-yielding
Matrix of TOP-REAL 2
holds width G = card(proj2.:Values G);
begin :: On go boards
theorem :: JORDAN1H:26
for G be Go-board
for f be FinSequence of TOP-REAL 2 st f is_sequence_on G
for k be Nat st 1 <= k & k+1 <= len f holds
LSeg(f,k) c= left_cell(f,k,G);
theorem :: JORDAN1H:27
for f being standard special_circular_sequence st 1 <= k & k+1 <= len f
holds left_cell(f,k,GoB f) = left_cell(f,k);
theorem :: JORDAN1H:28
for G be Go-board
for f be FinSequence of TOP-REAL 2 st f is_sequence_on G
for k be Nat st 1 <= k & k+1 <= len f holds
LSeg(f,k) c= right_cell(f,k,G);
theorem :: JORDAN1H:29
for f being standard special_circular_sequence st 1 <= k & k+1 <= len f
holds right_cell(f,k,GoB f) = right_cell(f,k);
theorem :: JORDAN1H:30
for P being Subset of TOP-REAL 2,
f being non constant standard special_circular_sequence st
P is_a_component_of (L~f)` holds
P = RightComp f or P = LeftComp f;
theorem :: JORDAN1H:31
for f being non constant standard special_circular_sequence st
f is_sequence_on G
for k st 1 <= k & k+1 <= len f
holds
Int right_cell(f,k,G) c= RightComp f & Int left_cell(f,k,G) c= LeftComp f;
theorem :: JORDAN1H:32
for i1,j1,i2,j2 being Nat, G being Go-board
st [i1,j1] in Indices G & [i2,j2] in Indices G & G*(i1,j1) = G*(i2,j2)
holds i1 = i2 & j1 = j2;
theorem :: JORDAN1H:33
for f being FinSequence of TOP-REAL 2, M being Go-board
holds f is_sequence_on M implies mid(f,i1,i2) is_sequence_on M;
definition
cluster -> non empty non-empty Go-board;
end;
theorem :: JORDAN1H:34
for G being Go-board st 1 <= i & i <= len G holds
SgmX(RealOrd, proj1.:Values G).i = G*(i,1)`1;
theorem :: JORDAN1H:35
for G being Go-board st 1 <= j & j <= width G holds
SgmX(RealOrd, proj2.:Values G).j = G*(1,j)`2;
theorem :: JORDAN1H:36
for f being non empty FinSequence of TOP-REAL 2, G being Go-board
st f is_sequence_on G &
(ex i st [1,i] in Indices G & G*(1,i) in rng f) &
(ex i st [len G,i] in Indices G & G*(len G,i) in rng f)
holds proj1.:rng f = proj1.:Values G;
theorem :: JORDAN1H:37
for f being non empty FinSequence of TOP-REAL 2, G being Go-board
st f is_sequence_on G &
(ex i st [i,1] in Indices G & G*(i,1) in rng f) &
(ex i st [i,width G] in Indices G & G*(i,width G) in rng f)
holds proj2.:rng f = proj2.:Values G;
definition let G be Go-board;
cluster Values G -> non empty;
end;
theorem :: JORDAN1H:38
for G being Go-board holds
G = GoB(SgmX(RealOrd, proj1.:Values G), SgmX(RealOrd,proj2.:Values G));
theorem :: JORDAN1H:39
for f being non empty FinSequence of TOP-REAL 2, G being Go-board
st proj1.:rng f = proj1.:Values G & proj2.:rng f = proj2.:Values G
holds G = GoB f;
theorem :: JORDAN1H:40
for f being non empty FinSequence of TOP-REAL 2, G being Go-board
st f is_sequence_on G &
(ex i st [1,i] in Indices G & G*(1,i) in rng f) &
(ex i st [i,1] in Indices G & G*(i,1) in rng f) &
(ex i st [len G,i] in Indices G & G*(len G,i) in rng f) &
(ex i st [i,width G] in Indices G & G*(i,width G) in rng f)
holds G = GoB f;
begin :: More about gauges
theorem :: JORDAN1H:41
m <= n & 1 <= i & i+1 <= len Gauge(C,n)
implies [\ (i-2)/2|^(n-'m)+2 /] is Nat;
theorem :: JORDAN1H:42
m <= n & 1 <= i & i+1 <= len Gauge(C,n)
implies
1 <= [\ (i-2)/2|^(n-'m)+2 /] & [\ (i-2)/2|^(n-'m)+2 /]+1 <= len Gauge(C,m);
theorem :: JORDAN1H:43
m <= n & 1 <= i & i+1 <= len Gauge(C,n) & 1 <= j & j+1 <= width Gauge(C,n)
implies
ex i1,j1 st
i1 = [\ (i-2)/2|^(n-'m)+2 /] & j1 = [\ (j-2)/2|^(n-'m)+2 /] &
cell(Gauge(C,n),i,j) c= cell(Gauge(C,m),i1,j1);
theorem :: JORDAN1H:44
m <= n & 1 <= i & i+1 <= len Gauge(C,n) & 1 <= j & j+1 <= width Gauge(C,n)
implies
ex i1,j1 st
1 <= i1 & i1+1 <= len Gauge(C,m) & 1 <= j1 & j1+1 <= width Gauge(C,m) &
cell(Gauge(C,n),i,j) c= cell(Gauge(C,m),i1,j1);
canceled 2;
theorem :: JORDAN1H:47
for P being Subset of TOP-REAL2 st P is Bounded
holds UBD P is not Bounded;
theorem :: JORDAN1H:48
for f being non constant standard special_circular_sequence
st Rotate(f,p) is clockwise_oriented
holds f is clockwise_oriented;
theorem :: JORDAN1H:49
for f being non constant standard special_circular_sequence
st LeftComp f = UBD L~f
holds f is clockwise_oriented;
begin :: More about cages
theorem :: JORDAN1H:50
for f being non constant standard special_circular_sequence
holds (Cl LeftComp(f))` = RightComp f;
theorem :: JORDAN1H:51
for f being non constant standard special_circular_sequence
holds (Cl RightComp(f))` = LeftComp f;
theorem :: JORDAN1H:52
C is connected implies GoB Cage(C,n) = Gauge(C,n);
theorem :: JORDAN1H:53
C is connected implies N-min C in right_cell(Cage(C,n),1);
theorem :: JORDAN1H:54
C is connected & i <= j implies L~Cage(C,j) c= Cl RightComp(Cage(C,i));
theorem :: JORDAN1H:55
C is connected & i <= j implies LeftComp(Cage(C,i)) c= LeftComp(Cage(C,j));
theorem :: JORDAN1H:56
C is connected & i <= j implies RightComp(Cage(C,j)) c= RightComp(Cage(C,i))
;
begin :: Preparing the Internal Approximation
definition let C,n;
func X-SpanStart(C,n) -> Nat equals
:: JORDAN1H:def 2
2|^(n-'1) + 2;
end;
theorem :: JORDAN1H:57
X-SpanStart(C,n) = Center Gauge(C,n);
theorem :: JORDAN1H:58
2 < X-SpanStart(C,n) & X-SpanStart(C,n) < len Gauge(C,n);
theorem :: JORDAN1H:59
1 <= X-SpanStart(C,n)-'1 & X-SpanStart(C,n)-'1 < len Gauge(C,n);
definition let C,n;
pred n is_sufficiently_large_for C means
:: JORDAN1H:def 3
ex j st j < width Gauge(C,n) &
cell(Gauge(C,n),X-SpanStart(C,n)-'1,j) c= BDD C;
end;
theorem :: JORDAN1H:60
n is_sufficiently_large_for C implies n >= 1;
theorem :: JORDAN1H:61
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for i1,j1 being Nat st
left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
[i1,j1+1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j1+1)
holds [i1-'1,j1+1] in Indices Gauge(C,n);
theorem :: JORDAN1H:62
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for i1,j1 being Nat st
left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
[i1+1,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1+1,j1)
holds [i1+1,j1+1] in Indices Gauge(C,n);
theorem :: JORDAN1H:63
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for j1,i2 being Nat st
left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i2+1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i2+1,j1) &
[i2,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i2,j1)
holds [i2,j1-'1] in Indices Gauge(C,n);
theorem :: JORDAN1H:64
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for i1,j2 being Nat st
left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i1,j2+1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j2+1) &
[i1,j2] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j2)
holds [i1+1,j2] in Indices Gauge(C,n);
theorem :: JORDAN1H:65
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for i1,j1 being Nat st
front_left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
[i1,j1+1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j1+1)
holds [i1,j1+2] in Indices Gauge(C,n);
theorem :: JORDAN1H:66
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for i1,j1 being Nat st
front_left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
[i1+1,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1+1,j1)
holds [i1+2,j1] in Indices Gauge(C,n);
theorem :: JORDAN1H:67
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for j1,i2 being Nat st
front_left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i2+1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i2+1,j1) &
[i2,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i2,j1)
holds [i2-'1,j1] in Indices Gauge(C,n);
theorem :: JORDAN1H:68
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for i1,j2 being Nat st
front_left_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i1,j2+1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j2+1) &
[i1,j2] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j2)
holds [i1,j2-'1] in Indices Gauge(C,n);
theorem :: JORDAN1H:69
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for i1,j1 being Nat st
front_right_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
[i1,j1+1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j1+1)
holds [i1+1,j1+1] in Indices Gauge(C,n);
theorem :: JORDAN1H:70
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for i1,j1 being Nat st
front_right_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j1) &
[i1+1,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1+1,j1)
holds [i1+1,j1-'1] in Indices Gauge(C,n);
theorem :: JORDAN1H:71
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for j1,i2 being Nat st
front_right_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i2+1,j1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i2+1,j1) &
[i2,j1] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i2,j1)
holds [i2,j1+1] in Indices Gauge(C,n);
theorem :: JORDAN1H:72
for C being compact non vertical non horizontal non empty
Subset of TOP-REAL 2
for n
for f being FinSequence of TOP-REAL 2 st f is_sequence_on Gauge(C,n) &
len f > 1
for i1,j2 being Nat st
front_right_cell(f,(len f)-'1,Gauge(C,n)) meets C &
[i1,j2+1] in Indices Gauge(C,n) & f/.((len f) -'1) = Gauge(C,n)*(i1,j2+1) &
[i1,j2] in Indices Gauge(C,n) & f/.len f = Gauge(C,n)*(i1,j2)
holds [i1-'1,j2] in Indices Gauge(C,n);
Back to top