Journal of Formalized Mathematics
Volume 14, 2002
University of Bialystok
Copyright (c) 2002
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Andrzej Trybulec
- Received May 21, 2002
- MML identifier: JORDAN11
- [
Mizar article,
MML identifier index
]
environ
vocabulary JORDAN1A, JORDAN11, JORDAN8, EUCLID, GROUP_1, FINSEQ_1, ARYTM_1,
SEQ_1, BOOLE, GOBOARD5, SETFAM_1, SQUARE_1, FUNCT_1, PSCOMP_1, RCOMP_1,
RELAT_2, JORDAN2C, JORDAN6, JORDAN9, PRE_TOPC, RELAT_1, TARSKI, ORDINAL2,
CONNSP_1, COMPTS_1, MCART_1, TOPREAL1, TOPREAL2, GOBOARD9, ARYTM_3,
SUBSET_1, LATTICES, NAT_1, INT_1, JORDAN10, SEQ_2, FUNCT_5, TREES_1,
MATRIX_1, JORDAN1H, JORDAN1E, ARYTM;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, NUMBERS, XREAL_0,
REAL_1, INT_1, NAT_1, BINARITH, CARD_4, CQC_SIM1, RELAT_1, FUNCT_2,
FINSEQ_1, MATRIX_1, SEQ_1, SEQ_4, RCOMP_1, STRUCT_0, PRE_TOPC, CONNSP_1,
COMPTS_1, EUCLID, TOPREAL1, TOPREAL2, GOBOARD5, GOBOARD9, PSCOMP_1,
JORDAN2C, JORDAN6, JCT_MISC, JORDAN8, JORDAN9, JORDAN10, JORDAN1A,
JORDAN1E, JORDAN1H;
constructors TOPREAL2, JORDAN8, JORDAN2C, BINARITH, REALSET1, GOBOARD9,
JORDAN1, RCOMP_1, PSCOMP_1, CONNSP_1, CQC_SIM1, REAL_1, CARD_4, TOPS_1,
JORDAN6, JORDAN9, JORDAN5C, JORDAN1A, JORDAN10, WSIERP_1, JCT_MISC,
JORDAN1H, JORDAN1E, PARTFUN1, INT_1;
clusters SPRECT_3, BORSUK_2, TOPREAL6, XREAL_0, SUBSET_1, PSCOMP_1, REVROT_1,
JORDAN8, INT_1, JORDAN1A, JORDAN1B, JORDAN10, MEMBERED, NUMBERS,
ORDINAL2;
requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM;
begin
reserve i,j,k,n for Nat,
C for being_simple_closed_curve Subset of TOP-REAL 2;
definition let C;
func ApproxIndex C -> Nat means
:: JORDAN11:def 1
it is_sufficiently_large_for C &
for j st j is_sufficiently_large_for C holds j >= it;
end;
theorem :: JORDAN11:1
ApproxIndex C >= 1;
definition let C;
func Y-InitStart C -> Nat means
:: JORDAN11:def 2
it < width Gauge(C,ApproxIndex C) &
cell(Gauge(C,ApproxIndex C),X-SpanStart(C,ApproxIndex C)-'1,it) c= BDD C &
for j st j < width Gauge(C,ApproxIndex C) &
cell(Gauge(C,ApproxIndex C),X-SpanStart(C,ApproxIndex C)-'1,j) c= BDD C
holds j >= it;
end;
theorem :: JORDAN11:2
Y-InitStart C > 1;
theorem :: JORDAN11:3
Y-InitStart C + 1 < width Gauge(C,ApproxIndex C);
definition
let C,n such that
n is_sufficiently_large_for C;
func Y-SpanStart(C,n) -> Nat means
:: JORDAN11:def 3
it <= width Gauge(C,n) &
(for k st it <= k & k <= 2|^(n-'ApproxIndex C)*(Y-InitStart C-'2)+2
holds cell(Gauge(C,n),X-SpanStart(C,n)-'1,k) c= BDD C) &
for j st j <= width Gauge(C,n) &
for k st j <= k & k <= 2|^(n-'ApproxIndex C)*(Y-InitStart C-'2)+2
holds cell(Gauge(C,n),X-SpanStart(C,n)-'1,k) c= BDD C
holds j >= it;
end;
theorem :: JORDAN11:4
n is_sufficiently_large_for C implies
X-SpanStart(C,n) = 2|^(n-'ApproxIndex C)*(X-SpanStart(C,ApproxIndex C)-2)+2;
theorem :: JORDAN11:5
n is_sufficiently_large_for C implies
Y-SpanStart(C,n) <= 2|^(n-'ApproxIndex C)*(Y-InitStart C-'2)+2;
theorem :: JORDAN11:6
n is_sufficiently_large_for C
implies cell(Gauge(C,n),X-SpanStart(C,n)-'1,Y-SpanStart(C,n)) c= BDD C;
theorem :: JORDAN11:7
n is_sufficiently_large_for C implies
1 < Y-SpanStart(C,n) & Y-SpanStart(C,n) <= width Gauge(C,n);
theorem :: JORDAN11:8
n is_sufficiently_large_for C implies
[X-SpanStart(C,n),Y-SpanStart(C,n)] in Indices Gauge(C,n);
theorem :: JORDAN11:9
n is_sufficiently_large_for C implies
[X-SpanStart(C,n)-'1,Y-SpanStart(C,n)] in Indices Gauge(C,n);
theorem :: JORDAN11:10
n is_sufficiently_large_for C
implies cell(Gauge(C,n),X-SpanStart(C,n)-'1,Y-SpanStart(C,n)-'1) meets C;
theorem :: JORDAN11:11
n is_sufficiently_large_for C
implies cell(Gauge(C,n),X-SpanStart(C,n)-'1,Y-SpanStart(C,n)) misses C;
Back to top