Lm3:
now for S, T, x1, x2 being set st x1 in S & x2 in T holds
<:(pr2 (S,T)),(pr1 (S,T)):> . [x1,x2] = [x2,x1]
let S,
T,
x1,
x2 be
set ;
( x1 in S & x2 in T implies <:(pr2 (S,T)),(pr1 (S,T)):> . [x1,x2] = [x2,x1] )assume that A1:
x1 in S
and A2:
x2 in T
;
<:(pr2 (S,T)),(pr1 (S,T)):> . [x1,x2] = [x2,x1]A3:
dom <:(pr2 (S,T)),(pr1 (S,T)):> =
(dom (pr2 (S,T))) /\ (dom (pr1 (S,T)))
by FUNCT_3:def 7
.=
(dom (pr2 (S,T))) /\ [:S,T:]
by FUNCT_3:def 4
.=
[:S,T:] /\ [:S,T:]
by FUNCT_3:def 5
.=
[:S,T:]
;
[x1,x2] in [:S,T:]
by A1, A2, ZFMISC_1:87;
hence <:(pr2 (S,T)),(pr1 (S,T)):> . [x1,x2] =
[((pr2 (S,T)) . (x1,x2)),((pr1 (S,T)) . (x1,x2))]
by A3, FUNCT_3:def 7
.=
[x2,((pr1 (S,T)) . (x1,x2))]
by A1, A2, FUNCT_3:def 5
.=
[x2,x1]
by A1, A2, FUNCT_3:def 4
;
verum
end;