definition
let R be
finite Approximation_Space;
let f be
preRIF of
R;
existence
ex b1 being preRIF of R st
for x, y being Subset of R holds b1 . (x,y) = 1 - (f . (x,y))
uniqueness
for b1, b2 being preRIF of R st ( for x, y being Subset of R holds b1 . (x,y) = 1 - (f . (x,y)) ) & ( for x, y being Subset of R holds b2 . (x,y) = 1 - (f . (x,y)) ) holds
b1 = b2
end;
Lemma1:
for R being finite Approximation_Space
for X, Y being Subset of R st X <> {} holds
kappa (X,Y) = ((CMap (kappa_1 R)) . (X,(Y `))) / (kappa_1 ((Y `),X))
Lemma2:
for R being finite Approximation_Space
for X, Y being Subset of R st X <> {} holds
kappa (X,Y) = ((CMap (kappa_2 R)) . (X,(Y `))) / (kappa_2 (([#] R),X))
Lemma6c1:
for R being finite Approximation_Space
for X, Y being Subset of R holds (CMap (kappa_2 R)) . (X,Y) <= (CMap (kappa_1 R)) . (X,Y)
Lemma6c2:
for R being finite Approximation_Space
for X, Y being Subset of R holds (CMap (kappa_1 R)) . (X,Y) <= (CMap (kappa R)) . (X,Y)
theorem LemacikX:
for
a,
b,
c being
Real st
a <= b &
b > 0 &
c >= 0 &
b > c holds
a / b >= (a - c) / (b - c)
Jaga1:
for R being finite Approximation_Space
for X, Y, Z being Subset of R st X <> {} & Y <> {} & Z <> {} holds
((CMap (kappa_1 R)) . (X,Y)) + ((CMap (kappa_1 R)) . (Y,Z)) >= (CMap (kappa_1 R)) . (X,Z)
Lack:
for X, Y being set holds X \+\ Y c= X \/ Y
Lemma6f1:
for R being finite Approximation_Space
for X, Y being Subset of R st ( ( X = {} & Y <> {} ) or ( X <> {} & Y = {} ) ) holds
((CMap (kappa_1 R)) . (X,Y)) + ((CMap (kappa_1 R)) . (Y,X)) = 1
Lemma6f:
for R being finite Approximation_Space
for X, Y being Subset of R st ( ( X = {} & Y <> {} ) or ( X <> {} & Y = {} ) ) holds
((CMap (kappa R)) . (X,Y)) + ((CMap (kappa R)) . (Y,X)) = 1
definition
let R be
finite Approximation_Space;
existence
ex b1 being preRIF of R st
for x, y being Subset of R holds b1 . (x,y) = (((CMap (kappa R)) . (x,y)) + ((CMap (kappa R)) . (y,x))) / 2
uniqueness
for b1, b2 being preRIF of R st ( for x, y being Subset of R holds b1 . (x,y) = (((CMap (kappa R)) . (x,y)) + ((CMap (kappa R)) . (y,x))) / 2 ) & ( for x, y being Subset of R holds b2 . (x,y) = (((CMap (kappa R)) . (x,y)) + ((CMap (kappa R)) . (y,x))) / 2 ) holds
b1 = b2
existence
ex b1 being preRIF of R st
for x, y being Subset of R holds b1 . (x,y) = ((CMap (kappa_1 R)) . (x,y)) + ((CMap (kappa_1 R)) . (y,x))
uniqueness
for b1, b2 being preRIF of R st ( for x, y being Subset of R holds b1 . (x,y) = ((CMap (kappa_1 R)) . (x,y)) + ((CMap (kappa_1 R)) . (y,x)) ) & ( for x, y being Subset of R holds b2 . (x,y) = ((CMap (kappa_1 R)) . (x,y)) + ((CMap (kappa_1 R)) . (y,x)) ) holds
b1 = b2
existence
ex b1 being preRIF of R st
for x, y being Subset of R holds b1 . (x,y) = ((CMap (kappa_2 R)) . (x,y)) + ((CMap (kappa_2 R)) . (y,x))
uniqueness
for b1, b2 being preRIF of R st ( for x, y being Subset of R holds b1 . (x,y) = ((CMap (kappa_2 R)) . (x,y)) + ((CMap (kappa_2 R)) . (y,x)) ) & ( for x, y being Subset of R holds b2 . (x,y) = ((CMap (kappa_2 R)) . (x,y)) + ((CMap (kappa_2 R)) . (y,x)) ) holds
b1 = b2
end;
definition
let R be
finite set ;
existence
ex b1 being Function of [:(bool R),(bool R):],REAL st
for A, B being Subset of R holds b1 . (A,B) = 1 - (JaccardIndex (A,B))
uniqueness
for b1, b2 being Function of [:(bool R),(bool R):],REAL st ( for A, B being Subset of R holds b1 . (A,B) = 1 - (JaccardIndex (A,B)) ) & ( for A, B being Subset of R holds b2 . (A,B) = 1 - (JaccardIndex (A,B)) ) holds
b1 = b2
correctness
;
end;
definition
let X be non
empty set ;
let p be
Element of
X;
let f be
Function of
[:X,X:],
REAL;
existence
ex b1 being Function of [:X,X:],REAL st
for x, y being Element of X holds b1 . (x,y) = (2 * (f . (x,y))) / (((f . (x,p)) + (f . (y,p))) + (f . (x,y)))
uniqueness
for b1, b2 being Function of [:X,X:],REAL st ( for x, y being Element of X holds b1 . (x,y) = (2 * (f . (x,y))) / (((f . (x,p)) + (f . (y,p))) + (f . (x,y))) ) & ( for x, y being Element of X holds b2 . (x,y) = (2 * (f . (x,y))) / (((f . (x,p)) + (f . (y,p))) + (f . (x,y))) ) holds
b1 = b2
end;
::
deftheorem SteinGen defines
SteinhausGen ROUGHIF2:def 10 :
for X being non empty set
for p being Element of X
for f, b4 being Function of [:X,X:],REAL holds
( b4 = SteinhausGen (f,p) iff for x, y being Element of X holds b4 . (x,y) = (2 * (f . (x,y))) / (((f . (x,p)) + (f . (y,p))) + (f . (x,y))) );
ZeZo:
for X being non empty set
for f being V154() Function of [:X,X:],REAL
for p, x, y being Element of X holds (SteinhausGen (f,p)) . (x,y) >= 0
definition
let X be
finite set ;
existence
ex b1 being Function of [:(bool X),(bool X):],REAL st
for x, y being Subset of X holds b1 . (x,y) = card (x \+\ y)
uniqueness
for b1, b2 being Function of [:(bool X),(bool X):],REAL st ( for x, y being Subset of X holds b1 . (x,y) = card (x \+\ y) ) & ( for x, y being Subset of X holds b2 . (x,y) = card (x \+\ y) ) holds
b1 = b2
end;