definition
existence
ex b1 being BinOp of REAL st
for x, y being Real holds b1 . (x,y) = min (x,y)
uniqueness
for b1, b2 being BinOp of REAL st ( for x, y being Real holds b1 . (x,y) = min (x,y) ) & ( for x, y being Real holds b2 . (x,y) = min (x,y) ) holds
b1 = b2
existence
ex b1 being BinOp of REAL st
for x, y being Real holds b1 . (x,y) = max (x,y)
uniqueness
for b1, b2 being BinOp of REAL st ( for x, y being Real holds b1 . (x,y) = max (x,y) ) & ( for x, y being Real holds b2 . (x,y) = max (x,y) ) holds
b1 = b2
end;
Lm1:
for a, b, c being Element of Real_Lattice holds a "\/" (b "\/" c) = (a "\/" b) "\/" c
by XXREAL_0:34;
Lm2:
for a, b being Element of Real_Lattice holds (a "/\" b) "\/" b = b
by XXREAL_0:36;
Lm3:
for a, b, c being Element of Real_Lattice holds a "/\" (b "/\" c) = (a "/\" b) "/\" c
by XXREAL_0:33;
Lm4:
for a, b being Element of Real_Lattice holds a "/\" (a "\/" b) = a
by XXREAL_0:35;
Lm5:
for a, b, c being Element of Real_Lattice holds a "/\" (b "\/" c) = (a "/\" b) "\/" (a "/\" c)
by XXREAL_0:38;
theorem Th3:
for
p,
q,
r being
Element of
Real_Lattice holds
(
maxreal . (
p,
(maxreal . (q,r)))
= maxreal . (
(maxreal . (q,r)),
p) &
maxreal . (
p,
(maxreal . (q,r)))
= maxreal . (
(maxreal . (p,q)),
r) &
maxreal . (
p,
(maxreal . (q,r)))
= maxreal . (
(maxreal . (q,p)),
r) &
maxreal . (
p,
(maxreal . (q,r)))
= maxreal . (
(maxreal . (r,p)),
q) &
maxreal . (
p,
(maxreal . (q,r)))
= maxreal . (
(maxreal . (r,q)),
p) &
maxreal . (
p,
(maxreal . (q,r)))
= maxreal . (
(maxreal . (p,r)),
q) )
theorem Th4:
for
p,
q,
r being
Element of
Real_Lattice holds
(
minreal . (
p,
(minreal . (q,r)))
= minreal . (
(minreal . (q,r)),
p) &
minreal . (
p,
(minreal . (q,r)))
= minreal . (
(minreal . (p,q)),
r) &
minreal . (
p,
(minreal . (q,r)))
= minreal . (
(minreal . (q,p)),
r) &
minreal . (
p,
(minreal . (q,r)))
= minreal . (
(minreal . (r,p)),
q) &
minreal . (
p,
(minreal . (q,r)))
= minreal . (
(minreal . (r,q)),
p) &
minreal . (
p,
(minreal . (q,r)))
= minreal . (
(minreal . (p,r)),
q) )
definition
let A be non
empty set ;
existence
ex b1 being BinOp of (Funcs (A,REAL)) st
for f, g being Element of Funcs (A,REAL) holds b1 . (f,g) = maxreal .: (f,g)
uniqueness
for b1, b2 being BinOp of (Funcs (A,REAL)) st ( for f, g being Element of Funcs (A,REAL) holds b1 . (f,g) = maxreal .: (f,g) ) & ( for f, g being Element of Funcs (A,REAL) holds b2 . (f,g) = maxreal .: (f,g) ) holds
b1 = b2
existence
ex b1 being BinOp of (Funcs (A,REAL)) st
for f, g being Element of Funcs (A,REAL) holds b1 . (f,g) = minreal .: (f,g)
uniqueness
for b1, b2 being BinOp of (Funcs (A,REAL)) st ( for f, g being Element of Funcs (A,REAL) holds b1 . (f,g) = minreal .: (f,g) ) & ( for f, g being Element of Funcs (A,REAL) holds b2 . (f,g) = minreal .: (f,g) ) holds
b1 = b2
end;
Lm6:
for A, B being non empty set
for x being Element of A
for f being Function of A,B holds x in dom f
Lm7:
for A being non empty set
for a, b, c being Element of LattStr(# (Funcs (A,REAL)),(maxfuncreal A),(minfuncreal A) #) holds a "\/" (b "\/" c) = (a "\/" b) "\/" c
by Th10;
Lm8:
for A being non empty set
for a, b, c being Element of LattStr(# (Funcs (A,REAL)),(maxfuncreal A),(minfuncreal A) #) holds a "/\" (b "/\" c) = (a "/\" b) "/\" c
by Th11;
theorem
for
A being non
empty set for
p,
q,
r being
Element of
(RealFunc_Lattice A) holds
(
(maxfuncreal A) . (
p,
((maxfuncreal A) . (q,r)))
= (maxfuncreal A) . (
((maxfuncreal A) . (q,r)),
p) &
(maxfuncreal A) . (
p,
((maxfuncreal A) . (q,r)))
= (maxfuncreal A) . (
((maxfuncreal A) . (p,q)),
r) &
(maxfuncreal A) . (
p,
((maxfuncreal A) . (q,r)))
= (maxfuncreal A) . (
((maxfuncreal A) . (q,p)),
r) &
(maxfuncreal A) . (
p,
((maxfuncreal A) . (q,r)))
= (maxfuncreal A) . (
((maxfuncreal A) . (r,p)),
q) &
(maxfuncreal A) . (
p,
((maxfuncreal A) . (q,r)))
= (maxfuncreal A) . (
((maxfuncreal A) . (r,q)),
p) &
(maxfuncreal A) . (
p,
((maxfuncreal A) . (q,r)))
= (maxfuncreal A) . (
((maxfuncreal A) . (p,r)),
q) )
theorem
for
A being non
empty set for
p,
q,
r being
Element of
(RealFunc_Lattice A) holds
(
(minfuncreal A) . (
p,
((minfuncreal A) . (q,r)))
= (minfuncreal A) . (
((minfuncreal A) . (q,r)),
p) &
(minfuncreal A) . (
p,
((minfuncreal A) . (q,r)))
= (minfuncreal A) . (
((minfuncreal A) . (p,q)),
r) &
(minfuncreal A) . (
p,
((minfuncreal A) . (q,r)))
= (minfuncreal A) . (
((minfuncreal A) . (q,p)),
r) &
(minfuncreal A) . (
p,
((minfuncreal A) . (q,r)))
= (minfuncreal A) . (
((minfuncreal A) . (r,p)),
q) &
(minfuncreal A) . (
p,
((minfuncreal A) . (q,r)))
= (minfuncreal A) . (
((minfuncreal A) . (r,q)),
p) &
(minfuncreal A) . (
p,
((minfuncreal A) . (q,r)))
= (minfuncreal A) . (
((minfuncreal A) . (p,r)),
q) )