theorem Th11:
for
z,
a0,
a1,
s1,
s2 being
Complex st
a1 = - (s1 + s2) &
a0 = s1 * s2 holds
(
((z |^ 2) + (a1 * z)) + a0 = 0 iff (
z = s1 or
z = s2 ) )
theorem Th13:
for
z,
a0,
a1,
a2,
x,
q,
r being
Complex st
z = x - (a2 / 3) &
q = ((3 * a1) - (a2 |^ 2)) / 9 &
r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 holds
(
(((z |^ 3) + (a2 * (z |^ 2))) + (a1 * z)) + a0 = 0 iff
((x |^ 3) + ((3 * q) * x)) - (2 * r) = 0 )
theorem Th14:
for
z,
a0,
a1,
a2,
s1,
s2,
s3 being
Complex st
a2 = - ((s1 + s2) + s3) &
a1 = ((s1 * s2) + (s1 * s3)) + (s2 * s3) &
a0 = - ((s1 * s2) * s3) holds
(
(((z |^ 3) + (a2 * (z |^ 2))) + (a1 * z)) + a0 = 0 iff (
z = s1 or
z = s2 or
z = s3 ) )
definition
let a0,
a1,
a2 be
Complex;
existence
( ( (3 * a1) - (a2 |^ 2) = 0 implies ex b1, r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b1 = s1 - (a2 / 3) ) ) & ( not (3 * a1) - (a2 |^ 2) = 0 implies ex b1, q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b1 = (s1 + s2) - (a2 / 3) ) ) )
uniqueness
for b1, b2 being Complex holds
( ( (3 * a1) - (a2 |^ 2) = 0 & ex r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b1 = s1 - (a2 / 3) ) & ex r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b2 = s1 - (a2 / 3) ) implies b1 = b2 ) & ( not (3 * a1) - (a2 |^ 2) = 0 & ex q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b1 = (s1 + s2) - (a2 / 3) ) & ex q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b2 = (s1 + s2) - (a2 / 3) ) implies b1 = b2 ) )
;
correctness
consistency
for b1 being Complex holds verum;
;
existence
( ( (3 * a1) - (a2 |^ 2) = 0 implies ex b1, r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b1 = ((- (s1 / 2)) - (a2 / 3)) + (((s1 * (2 -root 3)) * <i>) / 2) ) ) & ( not (3 * a1) - (a2 |^ 2) = 0 implies ex b1, q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b1 = ((- ((s1 + s2) / 2)) - (a2 / 3)) + ((((s1 - s2) * (2 -root 3)) * <i>) / 2) ) ) )
uniqueness
for b1, b2 being Complex holds
( ( (3 * a1) - (a2 |^ 2) = 0 & ex r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b1 = ((- (s1 / 2)) - (a2 / 3)) + (((s1 * (2 -root 3)) * <i>) / 2) ) & ex r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b2 = ((- (s1 / 2)) - (a2 / 3)) + (((s1 * (2 -root 3)) * <i>) / 2) ) implies b1 = b2 ) & ( not (3 * a1) - (a2 |^ 2) = 0 & ex q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b1 = ((- ((s1 + s2) / 2)) - (a2 / 3)) + ((((s1 - s2) * (2 -root 3)) * <i>) / 2) ) & ex q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b2 = ((- ((s1 + s2) / 2)) - (a2 / 3)) + ((((s1 - s2) * (2 -root 3)) * <i>) / 2) ) implies b1 = b2 ) )
;
correctness
consistency
for b1 being Complex holds verum;
;
existence
( ( (3 * a1) - (a2 |^ 2) = 0 implies ex b1, r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b1 = ((- (s1 / 2)) - (a2 / 3)) - (((s1 * (2 -root 3)) * <i>) / 2) ) ) & ( not (3 * a1) - (a2 |^ 2) = 0 implies ex b1, q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b1 = ((- ((s1 + s2) / 2)) - (a2 / 3)) - ((((s1 - s2) * (2 -root 3)) * <i>) / 2) ) ) )
uniqueness
for b1, b2 being Complex holds
( ( (3 * a1) - (a2 |^ 2) = 0 & ex r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b1 = ((- (s1 / 2)) - (a2 / 3)) - (((s1 * (2 -root 3)) * <i>) / 2) ) & ex r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b2 = ((- (s1 / 2)) - (a2 / 3)) - (((s1 * (2 -root 3)) * <i>) / 2) ) implies b1 = b2 ) & ( not (3 * a1) - (a2 |^ 2) = 0 & ex q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b1 = ((- ((s1 + s2) / 2)) - (a2 / 3)) - ((((s1 - s2) * (2 -root 3)) * <i>) / 2) ) & ex q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b2 = ((- ((s1 + s2) / 2)) - (a2 / 3)) - ((((s1 - s2) * (2 -root 3)) * <i>) / 2) ) implies b1 = b2 ) )
;
correctness
consistency
for b1 being Complex holds verum;
;
end;
::
deftheorem Def2 defines
1_root_of_cubic POLYEQ_5:def 2 :
for a0, a1, a2, b4 being Complex holds
( ( (3 * a1) - (a2 |^ 2) = 0 implies ( b4 = 1_root_of_cubic (a0,a1,a2) iff ex r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b4 = s1 - (a2 / 3) ) ) ) & ( not (3 * a1) - (a2 |^ 2) = 0 implies ( b4 = 1_root_of_cubic (a0,a1,a2) iff ex q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b4 = (s1 + s2) - (a2 / 3) ) ) ) );
::
deftheorem Def3 defines
2_root_of_cubic POLYEQ_5:def 3 :
for a0, a1, a2, b4 being Complex holds
( ( (3 * a1) - (a2 |^ 2) = 0 implies ( b4 = 2_root_of_cubic (a0,a1,a2) iff ex r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b4 = ((- (s1 / 2)) - (a2 / 3)) + (((s1 * (2 -root 3)) * <i>) / 2) ) ) ) & ( not (3 * a1) - (a2 |^ 2) = 0 implies ( b4 = 2_root_of_cubic (a0,a1,a2) iff ex q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b4 = ((- ((s1 + s2) / 2)) - (a2 / 3)) + ((((s1 - s2) * (2 -root 3)) * <i>) / 2) ) ) ) );
::
deftheorem Def4 defines
3_root_of_cubic POLYEQ_5:def 4 :
for a0, a1, a2, b4 being Complex holds
( ( (3 * a1) - (a2 |^ 2) = 0 implies ( b4 = 3_root_of_cubic (a0,a1,a2) iff ex r, s1 being Complex st
( r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s1 = 3 -root (2 * r) & b4 = ((- (s1 / 2)) - (a2 / 3)) - (((s1 * (2 -root 3)) * <i>) / 2) ) ) ) & ( not (3 * a1) - (a2 |^ 2) = 0 implies ( b4 = 3_root_of_cubic (a0,a1,a2) iff ex q, r, s, s1, s2 being Complex st
( q = ((3 * a1) - (a2 |^ 2)) / 9 & r = ((((9 * a2) * a1) - (2 * (a2 |^ 3))) - (27 * a0)) / 54 & s = 2 -root ((q |^ 3) + (r |^ 2)) & s1 = 3 -root (r + s) & s2 = - (q / s1) & b4 = ((- ((s1 + s2) / 2)) - (a2 / 3)) - ((((s1 - s2) * (2 -root 3)) * <i>) / 2) ) ) ) );
theorem Th18:
for
a0,
a1,
a2 being
Complex holds
(((1_root_of_cubic (a0,a1,a2)) * (2_root_of_cubic (a0,a1,a2))) + ((1_root_of_cubic (a0,a1,a2)) * (3_root_of_cubic (a0,a1,a2)))) + ((2_root_of_cubic (a0,a1,a2)) * (3_root_of_cubic (a0,a1,a2))) = a1
theorem
for
z,
a0,
a1,
a2,
a3 being
Complex st
a3 <> 0 holds
(
(((a3 * (z |^ 3)) + (a2 * (z |^ 2))) + (a1 * z)) + a0 = 0 iff (
z = 1_root_of_cubic (
(a0 / a3),
(a1 / a3),
(a2 / a3)) or
z = 2_root_of_cubic (
(a0 / a3),
(a1 / a3),
(a2 / a3)) or
z = 3_root_of_cubic (
(a0 / a3),
(a1 / a3),
(a2 / a3)) ) )
theorem Th21:
for
z,
a0,
a1,
a2,
a3,
x,
q,
r,
p being
Complex st
z = x - (a3 / 4) &
p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 &
q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 &
r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 holds
(
((((z |^ 4) + (a3 * (z |^ 3))) + (a2 * (z |^ 2))) + (a1 * z)) + a0 = 0 iff
(((x |^ 4) + ((4 * p) * (x |^ 2))) + ((8 * q) * x)) + (4 * r) = 0 )
theorem Th22:
for
z,
a0,
a1,
a2,
s1,
s2,
a3,
s3,
s4 being
Complex st
a3 = - (((s1 + s2) + s3) + s4) &
a2 = (((((s1 * s2) + (s1 * s3)) + (s1 * s4)) + (s2 * s3)) + (s2 * s4)) + (s3 * s4) &
a1 = - (((((s1 * s2) * s3) + ((s1 * s2) * s4)) + ((s1 * s3) * s4)) + ((s2 * s3) * s4)) &
a0 = ((s1 * s2) * s3) * s4 holds
(
((((z |^ 4) + (a3 * (z |^ 3))) + (a2 * (z |^ 2))) + (a1 * z)) + a0 = 0 iff (
z = s1 or
z = s2 or
z = s3 or
z = s4 ) )
theorem Th23:
for
z,
s1,
s2,
q,
r,
s3,
p being
Complex st
q <> 0 &
s1 = 2
-root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s2 = 2
-root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s3 = - (q / (s1 * s2)) holds
(
(((z |^ 4) + ((4 * p) * (z |^ 2))) + ((8 * q) * z)) + (4 * r) = 0 iff (
z = (s1 + s2) + s3 or
z = (s1 - s2) - s3 or
z = ((- s1) + s2) - s3 or
z = ((- s1) - s2) + s3 ) )
theorem
for
z,
a0,
a1,
a2,
s1,
s2,
a3,
q,
r,
s3,
p being
Complex st
p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 &
q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 &
q <> 0 &
r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 &
s1 = 2
-root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s2 = 2
-root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s3 = - (q / (s1 * s2)) holds
(
((((z |^ 4) + (a3 * (z |^ 3))) + (a2 * (z |^ 2))) + (a1 * z)) + a0 = 0 iff (
z = ((s1 + s2) + s3) - (a3 / 4) or
z = ((s1 - s2) - s3) - (a3 / 4) or
z = (((- s1) + s2) - s3) - (a3 / 4) or
z = (((- s1) - s2) + s3) - (a3 / 4) ) )
theorem
for
z,
a0,
a1,
a2,
s1,
a3,
q,
r,
p being
Complex st
p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 &
q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 &
q = 0 &
r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 &
s1 = 2
-root ((p |^ 2) - r) holds
(
((((z |^ 4) + (a3 * (z |^ 3))) + (a2 * (z |^ 2))) + (a1 * z)) + a0 = 0 iff (
z = (2 -root (- (2 * (p - s1)))) - (a3 / 4) or
z = (- (2 -root (- (2 * (p - s1))))) - (a3 / 4) or
z = (2 -root (- (2 * (p + s1)))) - (a3 / 4) or
z = (- (2 -root (- (2 * (p + s1))))) - (a3 / 4) ) )
definition
let a0,
a1,
a2,
a3 be
Complex;
func 1_root_of_quartic (
a0,
a1,
a2,
a3)
-> Complex means :
Def5:
ex
p,
r,
s1 being
Complex st
(
p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 &
r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 &
s1 = 2
-root ((p |^ 2) - r) &
it = (2 -root (- (2 * (p - s1)))) - (a3 / 4) )
if ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 otherwise ex
p,
q,
r,
s1,
s2,
s3 being
Complex st
(
p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 &
q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 &
r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 &
s1 = 2
-root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s2 = 2
-root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s3 = - (q / (s1 * s2)) &
it = ((s1 + s2) + s3) - (a3 / 4) );
existence
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ex b1, p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b1 = (2 -root (- (2 * (p - s1)))) - (a3 / 4) ) ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ex b1, p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b1 = ((s1 + s2) + s3) - (a3 / 4) ) ) )
uniqueness
for b1, b2 being Complex holds
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 & ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b1 = (2 -root (- (2 * (p - s1)))) - (a3 / 4) ) & ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b2 = (2 -root (- (2 * (p - s1)))) - (a3 / 4) ) implies b1 = b2 ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 & ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b1 = ((s1 + s2) + s3) - (a3 / 4) ) & ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b2 = ((s1 + s2) + s3) - (a3 / 4) ) implies b1 = b2 ) )
;
correctness
consistency
for b1 being Complex holds verum;
;
func 2_root_of_quartic (
a0,
a1,
a2,
a3)
-> Complex means :
Def6:
ex
p,
r,
s1 being
Complex st
(
p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 &
r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 &
s1 = 2
-root ((p |^ 2) - r) &
it = (- (2 -root (- (2 * (p - s1))))) - (a3 / 4) )
if ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 otherwise ex
p,
q,
r,
s1,
s2,
s3 being
Complex st
(
p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 &
q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 &
r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 &
s1 = 2
-root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s2 = 2
-root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s3 = - (q / (s1 * s2)) &
it = (((- s1) - s2) + s3) - (a3 / 4) );
existence
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ex b1, p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b1 = (- (2 -root (- (2 * (p - s1))))) - (a3 / 4) ) ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ex b1, p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b1 = (((- s1) - s2) + s3) - (a3 / 4) ) ) )
uniqueness
for b1, b2 being Complex holds
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 & ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b1 = (- (2 -root (- (2 * (p - s1))))) - (a3 / 4) ) & ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b2 = (- (2 -root (- (2 * (p - s1))))) - (a3 / 4) ) implies b1 = b2 ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 & ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b1 = (((- s1) - s2) + s3) - (a3 / 4) ) & ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b2 = (((- s1) - s2) + s3) - (a3 / 4) ) implies b1 = b2 ) )
;
correctness
consistency
for b1 being Complex holds verum;
;
func 3_root_of_quartic (
a0,
a1,
a2,
a3)
-> Complex means :
Def7:
ex
p,
r,
s1 being
Complex st
(
p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 &
r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 &
s1 = 2
-root ((p |^ 2) - r) &
it = (2 -root (- (2 * (p + s1)))) - (a3 / 4) )
if ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 otherwise ex
p,
q,
r,
s1,
s2,
s3 being
Complex st
(
p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 &
q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 &
r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 &
s1 = 2
-root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s2 = 2
-root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s3 = - (q / (s1 * s2)) &
it = (((- s1) + s2) - s3) - (a3 / 4) );
existence
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ex b1, p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b1 = (2 -root (- (2 * (p + s1)))) - (a3 / 4) ) ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ex b1, p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b1 = (((- s1) + s2) - s3) - (a3 / 4) ) ) )
uniqueness
for b1, b2 being Complex holds
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 & ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b1 = (2 -root (- (2 * (p + s1)))) - (a3 / 4) ) & ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b2 = (2 -root (- (2 * (p + s1)))) - (a3 / 4) ) implies b1 = b2 ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 & ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b1 = (((- s1) + s2) - s3) - (a3 / 4) ) & ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b2 = (((- s1) + s2) - s3) - (a3 / 4) ) implies b1 = b2 ) )
;
correctness
consistency
for b1 being Complex holds verum;
;
func 4_root_of_quartic (
a0,
a1,
a2,
a3)
-> Complex means :
Def8:
ex
p,
r,
s1 being
Complex st
(
p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 &
r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 &
s1 = 2
-root ((p |^ 2) - r) &
it = (- (2 -root (- (2 * (p + s1))))) - (a3 / 4) )
if ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 otherwise ex
p,
q,
r,
s1,
s2,
s3 being
Complex st
(
p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 &
q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 &
r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 &
s1 = 2
-root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s2 = 2
-root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) &
s3 = - (q / (s1 * s2)) &
it = ((s1 - s2) - s3) - (a3 / 4) );
existence
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ex b1, p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b1 = (- (2 -root (- (2 * (p + s1))))) - (a3 / 4) ) ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ex b1, p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b1 = ((s1 - s2) - s3) - (a3 / 4) ) ) )
uniqueness
for b1, b2 being Complex holds
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 & ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b1 = (- (2 -root (- (2 * (p + s1))))) - (a3 / 4) ) & ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b2 = (- (2 -root (- (2 * (p + s1))))) - (a3 / 4) ) implies b1 = b2 ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 & ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b1 = ((s1 - s2) - s3) - (a3 / 4) ) & ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b2 = ((s1 - s2) - s3) - (a3 / 4) ) implies b1 = b2 ) )
;
correctness
consistency
for b1 being Complex holds verum;
;
end;
::
deftheorem Def5 defines
1_root_of_quartic POLYEQ_5:def 5 :
for a0, a1, a2, a3, b5 being Complex holds
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ( b5 = 1_root_of_quartic (a0,a1,a2,a3) iff ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b5 = (2 -root (- (2 * (p - s1)))) - (a3 / 4) ) ) ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ( b5 = 1_root_of_quartic (a0,a1,a2,a3) iff ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b5 = ((s1 + s2) + s3) - (a3 / 4) ) ) ) );
::
deftheorem Def6 defines
2_root_of_quartic POLYEQ_5:def 6 :
for a0, a1, a2, a3, b5 being Complex holds
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ( b5 = 2_root_of_quartic (a0,a1,a2,a3) iff ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b5 = (- (2 -root (- (2 * (p - s1))))) - (a3 / 4) ) ) ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ( b5 = 2_root_of_quartic (a0,a1,a2,a3) iff ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b5 = (((- s1) - s2) + s3) - (a3 / 4) ) ) ) );
::
deftheorem Def7 defines
3_root_of_quartic POLYEQ_5:def 7 :
for a0, a1, a2, a3, b5 being Complex holds
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ( b5 = 3_root_of_quartic (a0,a1,a2,a3) iff ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b5 = (2 -root (- (2 * (p + s1)))) - (a3 / 4) ) ) ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ( b5 = 3_root_of_quartic (a0,a1,a2,a3) iff ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b5 = (((- s1) + s2) - s3) - (a3 / 4) ) ) ) );
::
deftheorem Def8 defines
4_root_of_quartic POLYEQ_5:def 8 :
for a0, a1, a2, a3, b5 being Complex holds
( ( ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ( b5 = 4_root_of_quartic (a0,a1,a2,a3) iff ex p, r, s1 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root ((p |^ 2) - r) & b5 = (- (2 -root (- (2 * (p + s1))))) - (a3 / 4) ) ) ) & ( not ((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3) = 0 implies ( b5 = 4_root_of_quartic (a0,a1,a2,a3) iff ex p, q, r, s1, s2, s3 being Complex st
( p = ((8 * a2) - (3 * (a3 |^ 2))) / 32 & q = (((8 * a1) - ((4 * a2) * a3)) + (a3 |^ 3)) / 64 & r = ((((256 * a0) - ((64 * a3) * a1)) + ((16 * (a3 |^ 2)) * a2)) - (3 * (a3 |^ 4))) / 1024 & s1 = 2 -root (1_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s2 = 2 -root (2_root_of_cubic ((- (q |^ 2)),((p |^ 2) - r),(2 * p))) & s3 = - (q / (s1 * s2)) & b5 = ((s1 - s2) - s3) - (a3 / 4) ) ) ) );
theorem Th26:
for
a0,
a1,
a2,
a3 being
Complex holds
(((1_root_of_quartic (a0,a1,a2,a3)) + (2_root_of_quartic (a0,a1,a2,a3))) + (3_root_of_quartic (a0,a1,a2,a3))) + (4_root_of_quartic (a0,a1,a2,a3)) = - a3
theorem Th27:
for
a0,
a1,
a2,
a3 being
Complex holds
((((((1_root_of_quartic (a0,a1,a2,a3)) * (2_root_of_quartic (a0,a1,a2,a3))) + ((1_root_of_quartic (a0,a1,a2,a3)) * (3_root_of_quartic (a0,a1,a2,a3)))) + ((1_root_of_quartic (a0,a1,a2,a3)) * (4_root_of_quartic (a0,a1,a2,a3)))) + ((2_root_of_quartic (a0,a1,a2,a3)) * (3_root_of_quartic (a0,a1,a2,a3)))) + ((2_root_of_quartic (a0,a1,a2,a3)) * (4_root_of_quartic (a0,a1,a2,a3)))) + ((3_root_of_quartic (a0,a1,a2,a3)) * (4_root_of_quartic (a0,a1,a2,a3))) = a2
theorem Th28:
for
a0,
a1,
a2,
a3 being
Complex holds
(((((1_root_of_quartic (a0,a1,a2,a3)) * (2_root_of_quartic (a0,a1,a2,a3))) * (3_root_of_quartic (a0,a1,a2,a3))) + (((1_root_of_quartic (a0,a1,a2,a3)) * (2_root_of_quartic (a0,a1,a2,a3))) * (4_root_of_quartic (a0,a1,a2,a3)))) + (((1_root_of_quartic (a0,a1,a2,a3)) * (3_root_of_quartic (a0,a1,a2,a3))) * (4_root_of_quartic (a0,a1,a2,a3)))) + (((2_root_of_quartic (a0,a1,a2,a3)) * (3_root_of_quartic (a0,a1,a2,a3))) * (4_root_of_quartic (a0,a1,a2,a3))) = - a1
theorem Th29:
for
a0,
a1,
a2,
a3 being
Complex holds
(((1_root_of_quartic (a0,a1,a2,a3)) * (2_root_of_quartic (a0,a1,a2,a3))) * (3_root_of_quartic (a0,a1,a2,a3))) * (4_root_of_quartic (a0,a1,a2,a3)) = a0
theorem
for
z,
a0,
a1,
a2,
a3,
a4 being
Complex st
a4 <> 0 holds
(
((((a4 * (z |^ 4)) + (a3 * (z |^ 3))) + (a2 * (z |^ 2))) + (a1 * z)) + a0 = 0 iff (
z = 1_root_of_quartic (
(a0 / a4),
(a1 / a4),
(a2 / a4),
(a3 / a4)) or
z = 2_root_of_quartic (
(a0 / a4),
(a1 / a4),
(a2 / a4),
(a3 / a4)) or
z = 3_root_of_quartic (
(a0 / a4),
(a1 / a4),
(a2 / a4),
(a3 / a4)) or
z = 4_root_of_quartic (
(a0 / a4),
(a1 / a4),
(a2 / a4),
(a3 / a4)) ) )