definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_Int_Par_Pasch means
for
a,
b,
c,
d,
p being
Element of
OAS st not
p,
b,
c are_collinear &
Mid b,
p,
a &
p,
c,
d are_collinear &
b,
c '||' d,
a holds
Mid c,
p,
d;
end;
::
deftheorem defines
satisfying_Int_Par_Pasch PASCH:def 1 :
for OAS being OAffinSpace holds
( OAS is satisfying_Int_Par_Pasch iff for a, b, c, d, p being Element of OAS st not p,b,c are_collinear & Mid b,p,a & p,c,d are_collinear & b,c '||' d,a holds
Mid c,p,d );
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_Ext_Par_Pasch means
for
a,
b,
c,
d,
p being
Element of
OAS st
Mid p,
b,
c &
p,
a,
d are_collinear &
a,
b '||' c,
d & not
p,
a,
b are_collinear holds
Mid p,
a,
d;
end;
::
deftheorem defines
satisfying_Ext_Par_Pasch PASCH:def 2 :
for OAS being OAffinSpace holds
( OAS is satisfying_Ext_Par_Pasch iff for a, b, c, d, p being Element of OAS st Mid p,b,c & p,a,d are_collinear & a,b '||' c,d & not p,a,b are_collinear holds
Mid p,a,d );
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_Gen_Par_Pasch means
for
a,
b,
c,
a9,
b9,
c9 being
Element of
OAS st not
a,
b,
a9 are_collinear &
a,
a9 '||' b,
b9 &
a,
a9 '||' c,
c9 &
Mid a,
b,
c &
a9,
b9,
c9 are_collinear holds
Mid a9,
b9,
c9;
end;
::
deftheorem defines
satisfying_Gen_Par_Pasch PASCH:def 3 :
for OAS being OAffinSpace holds
( OAS is satisfying_Gen_Par_Pasch iff for a, b, c, a9, b9, c9 being Element of OAS st not a,b,a9 are_collinear & a,a9 '||' b,b9 & a,a9 '||' c,c9 & Mid a,b,c & a9,b9,c9 are_collinear holds
Mid a9,b9,c9 );
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_Ext_Bet_Pasch means
for
a,
b,
c,
d,
x,
y being
Element of
OAS st
Mid a,
b,
d &
Mid b,
x,
c & not
a,
b,
c are_collinear holds
ex
y being
Element of
OAS st
(
Mid a,
y,
c &
Mid y,
x,
d );
end;
::
deftheorem defines
satisfying_Ext_Bet_Pasch PASCH:def 4 :
for OAS being OAffinSpace holds
( OAS is satisfying_Ext_Bet_Pasch iff for a, b, c, d, x, y being Element of OAS st Mid a,b,d & Mid b,x,c & not a,b,c are_collinear holds
ex y being Element of OAS st
( Mid a,y,c & Mid y,x,d ) );
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_Int_Bet_Pasch means
for
a,
b,
c,
d,
x,
y being
Element of
OAS st
Mid a,
b,
d &
Mid a,
x,
c & not
a,
b,
c are_collinear holds
ex
y being
Element of
OAS st
(
Mid b,
y,
c &
Mid x,
y,
d );
end;
::
deftheorem defines
satisfying_Int_Bet_Pasch PASCH:def 5 :
for OAS being OAffinSpace holds
( OAS is satisfying_Int_Bet_Pasch iff for a, b, c, d, x, y being Element of OAS st Mid a,b,d & Mid a,x,c & not a,b,c are_collinear holds
ex y being Element of OAS st
( Mid b,y,c & Mid x,y,d ) );
definition
let OAS be
OAffinSpace;
attr OAS is
Fanoian means
for
a,
b,
c,
d being
Element of
OAS st
a,
b // c,
d &
a,
c // b,
d & not
a,
b,
c are_collinear holds
ex
x being
Element of
OAS st
(
Mid a,
x,
d &
Mid b,
x,
c );
end;
::
deftheorem defines
Fanoian PASCH:def 6 :
for OAS being OAffinSpace holds
( OAS is Fanoian iff for a, b, c, d being Element of OAS st a,b // c,d & a,c // b,d & not a,b,c are_collinear holds
ex x being Element of OAS st
( Mid a,x,d & Mid b,x,c ) );
theorem Th4:
for
OAS being
OAffinSpace for
a,
b,
c,
d1,
d2,
p being
Element of
OAS st not
p,
a,
b are_collinear &
p,
b,
c are_collinear &
p,
a,
d1 are_collinear &
p,
a,
d2 are_collinear &
a,
b '||' c,
d1 &
a,
b '||' c,
d2 holds
d1 = d2
theorem Th5:
for
OAS being
OAffinSpace for
a,
b,
c,
d1,
d2 being
Element of
OAS st not
a,
b,
c are_collinear &
a,
b '||' c,
d1 &
a,
b '||' c,
d2 &
a,
c '||' b,
d1 &
a,
c '||' b,
d2 holds
d1 = d2
theorem Th6:
for
OAS being
OAffinSpace for
a,
b,
c,
d,
p being
Element of
OAS st not
p,
b,
c are_collinear &
Mid b,
p,
a &
p,
c,
d are_collinear &
b,
c '||' d,
a holds
Mid c,
p,
d
theorem Th8:
for
OAS being
OAffinSpace for
a,
b,
c,
d,
p being
Element of
OAS st
Mid p,
b,
c &
p,
a,
d are_collinear &
a,
b '||' c,
d & not
p,
a,
b are_collinear holds
Mid p,
a,
d
theorem Th10:
for
OAS being
OAffinSpace for
a,
a9,
b,
b9,
c,
c9 being
Element of
OAS st not
a,
b,
a9 are_collinear &
a,
a9 '||' b,
b9 &
a,
a9 '||' c,
c9 &
Mid a,
b,
c &
a9,
b9,
c9 are_collinear holds
Mid a9,
b9,
c9
theorem
for
OAS being
OAffinSpace for
a,
a9,
b,
b9,
p being
Element of
OAS st not
p,
a,
b are_collinear &
a,
p // p,
a9 &
b,
p // p,
b9 &
a,
b '||' a9,
b9 holds
a,
b // b9,
a9
theorem
for
OAS being
OAffinSpace for
a,
a9,
b,
b9,
p being
Element of
OAS st not
p,
a,
a9 are_collinear &
p,
a // p,
b &
p,
a9 // p,
b9 &
a,
a9 '||' b,
b9 holds
a,
a9 // b,
b9
theorem Th14:
for
OAS being
OAffinSpace for
a,
b,
c,
p being
Element of
OAS st not
p,
a,
b are_collinear &
p,
a '||' b,
c &
p,
b '||' a,
c holds
(
p,
a // b,
c &
p,
b // a,
c )
theorem Th15:
for
OAS being
OAffinSpace for
a,
b,
c,
d,
p being
Element of
OAS st
Mid p,
c,
b &
c,
d // b,
a &
p,
d // p,
a & not
p,
a,
b are_collinear &
p <> c holds
Mid p,
d,
a
theorem Th16:
for
OAS being
OAffinSpace for
a,
b,
c,
d,
p being
Element of
OAS st
Mid p,
d,
a &
c,
d // b,
a &
p,
c // p,
b & not
p,
a,
b are_collinear &
p <> c holds
Mid p,
c,
b
theorem Th17:
for
OAS being
OAffinSpace for
a,
b,
c,
d,
p being
Element of
OAS st not
p,
a,
b are_collinear &
p,
b // p,
c &
b,
a // c,
d &
p <> d holds
not
Mid a,
p,
d
theorem Th21:
for
OAS being
OAffinSpace for
a,
b,
c,
p being
Element of
OAS st not
p,
a,
b are_collinear &
Mid p,
c,
b holds
ex
x being
Element of
OAS st
(
Mid p,
x,
a &
a,
b // x,
c )
theorem Th23:
for
OAS being
OAffinSpace for
a,
b,
c,
d being
Element of
OAS st
a,
b // c,
d & not
a,
b,
c are_collinear holds
ex
x being
Element of
OAS st
(
Mid a,
x,
d &
Mid b,
x,
c )
theorem
for
OAS being
OAffinSpace for
a,
b,
c,
d being
Element of
OAS st
a,
b '||' c,
d &
a,
c '||' b,
d & not
a,
b,
c are_collinear holds
ex
x being
Element of
OAS st
(
x,
a,
d are_collinear &
x,
b,
c are_collinear )
theorem
for
OAS being
OAffinSpace for
a,
b,
c,
d,
p being
Element of
OAS st
a,
b '||' c,
d & not
a,
b,
c are_collinear &
p,
a,
d are_collinear &
p,
b,
c are_collinear holds
not
p,
a,
b are_collinear
theorem Th27:
for
OAS being
OAffinSpace for
a,
b,
c,
d,
x being
Element of
OAS st
Mid a,
b,
d &
Mid b,
x,
c & not
a,
b,
c are_collinear holds
ex
y being
Element of
OAS st
(
Mid a,
y,
c &
Mid y,
x,
d )
theorem Th29:
for
OAS being
OAffinSpace for
a,
b,
c,
d,
x being
Element of
OAS st
Mid a,
b,
d &
Mid a,
x,
c & not
a,
b,
c are_collinear holds
ex
y being
Element of
OAS st
(
Mid b,
y,
c &
Mid x,
y,
d )
theorem
for
OAS being
OAffinSpace for
a,
a9,
b,
b9,
p,
p9 being
Element of
OAS st
Mid p,
a,
b &
p,
a // p9,
a9 & not
p,
a,
p9 are_collinear &
p9,
a9,
b9 are_collinear &
p,
p9 // a,
a9 &
p,
p9 // b,
b9 holds
Mid p9,
a9,
b9