theorem Th1:
for
a,
b,
c,
d,
e,
f,
g,
h,
i being
Real for
M being
Matrix of 3,
REAL st
M = <*<*a,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
Det M = ((((((a * e) * i) - ((c * e) * g)) - ((a * f) * h)) + ((b * f) * g)) - ((b * d) * i)) + ((c * d) * h)
Lm1:
for b, c, d, e, f, g, h, i being Real
for M being Matrix of 3,REAL st M = <*<*0,b,c*>,<*d,e,f*>,<*g,h,i*>*> holds
Det M = (((- ((c * e) * g)) + ((b * f) * g)) - ((b * d) * i)) + ((c * d) * h)
Lm2:
for b, d, e, f, g, h, i being Real
for M being Matrix of 3,REAL st M = <*<*0,b,0*>,<*d,e,f*>,<*g,h,i*>*> holds
Det M = ((b * f) * g) - ((b * d) * i)
Lm3:
for b, e, f, g, h, i being Real
for M being Matrix of 3,REAL st M = <*<*0,b,0*>,<*0,e,f*>,<*g,h,i*>*> holds
Det M = (b * f) * g
Lm4:
for a, d, e, f, h, i being Real
for M being Matrix of 3,REAL st M = <*<*a,0,0*>,<*d,e,f*>,<*0,h,i*>*> holds
Det M = ((a * e) * i) - ((a * h) * f)
theorem Th2:
for
P1,
P4,
P5 being
Element of
(ProjectiveSpace (TOP-REAL 3)) for
p1,
p2,
p3,
p4,
p5 being
Element of
(TOP-REAL 3) st not
p1 is
zero &
P1 = Dir p1 & not
p4 is
zero &
P4 = Dir p4 & not
p5 is
zero &
P5 = Dir p5 &
P1,
P4,
P5 are_collinear holds
|{p1,p2,p4}| * |{p1,p3,p5}| = |{p1,p2,p5}| * |{p1,p3,p4}|
theorem Th3:
for
r416,
r415,
r413,
r418,
r419,
r412,
r712,
r746,
r716,
r742,
r715,
r743,
r713,
r745,
r749,
r718,
r719,
r748 being non
zero Real st
(- r412) * (- r713) = (- r413) * (- r712) &
(- r415) * (- r719) = (- r419) * (- r715) &
(- r418) * (- r716) = (- r416) * (- r718) &
(- r745) * r416 = (- r746) * r415 &
(- r748) * r413 = (- r743) * r418 &
(- r742) * r419 = (- r749) * r412 &
r712 * r746 = r716 * r742 &
r715 * r743 = r713 * r745 holds
r718 * r749 = r719 * r748
theorem Th4:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c3,
c4,
c5,
c6,
c7,
c8,
c9,
c10 being
Element of
PCPP st
c2 <> c1 &
c3 <> c1 &
c3 <> c2 &
c4 <> c2 &
c4 <> c3 &
c5 <> c1 &
c6 <> c1 &
c6 <> c5 &
c7 <> c5 &
c7 <> c6 & not
c1,
c4,
c7 are_collinear &
c1,
c4,
c2 are_collinear &
c1,
c4,
c3 are_collinear &
c1,
c7,
c5 are_collinear &
c1,
c7,
c6 are_collinear &
c4,
c5,
c8 are_collinear &
c7,
c2,
c8 are_collinear &
c4,
c6,
c9 are_collinear &
c3,
c7,
c9 are_collinear &
c2,
c6,
c10 are_collinear &
c3,
c5,
c10 are_collinear holds
( not
c4,
c7,
c2 are_collinear & not
c4,
c10,
c3 are_collinear & not
c4,
c7,
c3 are_collinear & not
c4,
c10,
c2 are_collinear & not
c4,
c7,
c5 are_collinear & not
c4,
c10,
c8 are_collinear & not
c4,
c7,
c8 are_collinear & not
c4,
c10,
c5 are_collinear & not
c4,
c7,
c9 are_collinear & not
c4,
c10,
c6 are_collinear & not
c4,
c7,
c6 are_collinear & not
c4,
c10,
c9 are_collinear & not
c7,
c10,
c5 are_collinear & not
c7,
c4,
c6 are_collinear & not
c7,
c10,
c9 are_collinear & not
c7,
c4,
c3 are_collinear & not
c7,
c10,
c3 are_collinear & not
c7,
c4,
c9 are_collinear & not
c7,
c10,
c2 are_collinear & not
c7,
c4,
c8 are_collinear & not
c10,
c4,
c2 are_collinear & not
c10,
c7,
c6 are_collinear & not
c10,
c4,
c6 are_collinear & not
c10,
c7,
c2 are_collinear & not
c10,
c4,
c5 are_collinear & not
c10,
c7,
c3 are_collinear & not
c10,
c4,
c3 are_collinear & not
c10,
c7,
c5 are_collinear )
theorem Th5:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c3,
c4,
c5,
c6,
c7,
c8,
c10 being
Element of
PCPP st not
c2 = c1 & not
c3 = c2 & not
c5 = c1 & not
c7 = c5 & not
c7 = c6 & not
c1,
c4,
c7 are_collinear &
c1,
c4,
c2 are_collinear &
c1,
c4,
c3 are_collinear &
c1,
c7,
c5 are_collinear &
c1,
c7,
c6 are_collinear &
c4,
c5,
c8 are_collinear &
c7,
c2,
c8 are_collinear &
c2,
c6,
c10 are_collinear &
c3,
c5,
c10 are_collinear holds
not
c10,
c7,
c8 are_collinear
theorem Th6:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c3,
c4,
c5,
c6,
c7,
c8,
c9,
c10 being
Element of
PCPP st not
c1,
c4,
c7 are_collinear &
c1,
c4,
c2 are_collinear &
c1,
c4,
c3 are_collinear &
c1,
c7,
c5 are_collinear &
c1,
c7,
c6 are_collinear &
c4,
c5,
c8 are_collinear &
c7,
c2,
c8 are_collinear &
c4,
c6,
c9 are_collinear &
c3,
c7,
c9 are_collinear &
c2,
c6,
c10 are_collinear &
c3,
c5,
c10 are_collinear holds
(
c4,
c2,
c3 are_collinear &
c4,
c5,
c8 are_collinear &
c4,
c9,
c6 are_collinear &
c7,
c5,
c6 are_collinear &
c7,
c9,
c3 are_collinear &
c7,
c2,
c8 are_collinear &
c10,
c2,
c6 are_collinear &
c10,
c5,
c3 are_collinear )
theorem Th7:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c3,
c5,
c6 being
Element of
PCPP st
c3 <> c1 &
c3 <> c2 &
c6 <> c1 &
c6 <> c5 & not
c1,
c2,
c5 are_collinear &
c1,
c2,
c3 are_collinear &
c1,
c5,
c6 are_collinear holds
( not
c2,
c3,
c5 are_collinear & not
c2,
c3,
c6 are_collinear & not
c2,
c5,
c6 are_collinear & not
c3,
c5,
c6 are_collinear )
theorem Th8:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c3,
c4,
c5,
c6,
c7 being
Element of
PCPP st
c3 <> c1 &
c4 <> c1 &
c4 <> c3 &
c3 <> c2 &
c4 <> c2 &
c6 <> c1 &
c7 <> c1 &
c7 <> c6 &
c6 <> c5 &
c7 <> c5 & not
c1,
c2,
c5 are_collinear &
c1,
c2,
c3 are_collinear &
c1,
c2,
c4 are_collinear &
c1,
c5,
c6 are_collinear &
c1,
c5,
c7 are_collinear holds
( not
c1,
c3,
c6 are_collinear &
c1,
c3,
c4 are_collinear &
c1,
c6,
c7 are_collinear &
c3 <> c1 &
c2 <> c1 &
c3 <> c2 &
c4 <> c3 &
c4 <> c2 &
c6 <> c1 &
c5 <> c1 &
c6 <> c5 &
c7 <> c6 &
c7 <> c5 & not
c1,
c4,
c7 are_collinear &
c1,
c4,
c3 are_collinear &
c1,
c4,
c2 are_collinear &
c1,
c7,
c6 are_collinear &
c1,
c7,
c5 are_collinear )
theorem Th9:
for
PCPP being
CollProjectiveSpace for
c2,
c3,
c4,
c6,
c8 being
Element of
PCPP st
c4 <> c2 &
c4 <> c3 &
c8 <> c2 & not
c2,
c3,
c6 are_collinear &
c2,
c3,
c4 are_collinear &
c2,
c6,
c8 are_collinear holds
not
c3,
c4,
c8 are_collinear
theorem Th10:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c4,
c5,
c6,
c8 being
Element of
PCPP st
c4 <> c1 &
c6 <> c5 & not
c1,
c2,
c5 are_collinear &
c1,
c2,
c4 are_collinear &
c1,
c5,
c6 are_collinear &
c4,
c6,
c8 are_collinear holds
c8 <> c5
theorem Th11:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c4,
c5,
c6,
c8 being
Element of
PCPP st
c4 <> c2 &
c6 <> c1 & not
c1,
c2,
c5 are_collinear &
c1,
c2,
c4 are_collinear &
c1,
c5,
c6 are_collinear &
c4,
c6,
c8 are_collinear holds
c8 <> c2
theorem Th12:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c3,
c4,
c5 being
Element of
PCPP st not
c1,
c2,
c5 are_collinear &
c1,
c2,
c3 are_collinear &
c1,
c2,
c4 are_collinear holds
c2,
c3,
c4 are_collinear
theorem Th13:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c5,
c6,
c7 being
Element of
PCPP st not
c1,
c2,
c5 are_collinear &
c1,
c5,
c6 are_collinear &
c1,
c5,
c7 are_collinear holds
c5,
c6,
c7 are_collinear
theorem Th14:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c3,
c5,
c7 being
Element of
PCPP st
c3 <> c1 & not
c1,
c2,
c5 are_collinear &
c1,
c2,
c3 are_collinear &
c1,
c5,
c7 are_collinear holds
c7 <> c3
theorem Th15:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c3,
c4,
c5,
c9 being
Element of
PCPP st
c4 <> c1 &
c4 <> c3 & not
c1,
c2,
c5 are_collinear &
c1,
c2,
c3 are_collinear &
c1,
c2,
c4 are_collinear &
c4,
c5,
c9 are_collinear holds
c9 <> c3
theorem Th16:
for
PCPP being
CollProjectiveSpace for
c1,
c2,
c4,
c5,
c6,
c7,
c9 being
Element of
PCPP st
c4 <> c1 &
c4 <> c2 &
c6 <> c1 &
c7 <> c6 &
c7 <> c5 & not
c1,
c2,
c5 are_collinear &
c1,
c2,
c4 are_collinear &
c1,
c5,
c6 are_collinear &
c1,
c5,
c7 are_collinear &
c2,
c7,
c9 are_collinear &
c4,
c5,
c9 are_collinear holds
not
c9,
c2,
c5 are_collinear
Lm5:
for o, p1, p2, p3, q1, q2, q3, r1, r2, r3 being Element of (ProjectiveSpace (TOP-REAL 3)) st o <> p2 & o <> p3 & p2 <> p3 & p1 <> p2 & p1 <> p3 & o <> q2 & o <> q3 & q2 <> q3 & q1 <> q2 & q1 <> q3 & not o,p1,q1 are_collinear & o,p1,p2 are_collinear & o,p1,p3 are_collinear & o,q1,q2 are_collinear & o,q1,q3 are_collinear & p1,q2,r3 are_collinear & q1,p2,r3 are_collinear & p1,q3,r2 are_collinear & p3,q1,r2 are_collinear & p2,q3,r1 are_collinear & p3,q2,r1 are_collinear & not p1,q1,r1 are_collinear holds
r1,r2,r3 are_collinear
Lm6:
for o, p1, p2, p3, q1, q2, q3, r1, r2, r3 being Element of (ProjectiveSpace (TOP-REAL 3)) st o <> p2 & o <> p3 & p2 <> p3 & p1 <> p2 & p1 <> p3 & o <> q2 & o <> q3 & q2 <> q3 & q1 <> q2 & q1 <> q3 & not o,p1,q1 are_collinear & o,p1,p2 are_collinear & o,p1,p3 are_collinear & o,q1,q2 are_collinear & o,q1,q3 are_collinear & p1,q2,r3 are_collinear & q1,p2,r3 are_collinear & p1,q3,r2 are_collinear & p3,q1,r2 are_collinear & p2,q3,r1 are_collinear & p3,q2,r1 are_collinear & p1,q1,r1 are_collinear & p2,q2,r2 are_collinear & p3,q3,r3 are_collinear holds
r1,r2,r3 are_collinear
Lm7:
for o, p1, p2, p3, q1, q2, q3, r1, r2, r3 being Element of (ProjectiveSpace (TOP-REAL 3)) st o <> p2 & o <> p3 & p2 <> p3 & p1 <> p2 & p1 <> p3 & o <> q2 & o <> q3 & q2 <> q3 & q1 <> q2 & q1 <> q3 & not o,p1,q1 are_collinear & o,p1,p2 are_collinear & o,p1,p3 are_collinear & o,q1,q2 are_collinear & o,q1,q3 are_collinear & p1,q2,r3 are_collinear & q1,p2,r3 are_collinear & p1,q3,r2 are_collinear & p3,q1,r2 are_collinear & p2,q3,r1 are_collinear & p3,q2,r1 are_collinear & p1,q1,r1 are_collinear holds
r1,r2,r3 are_collinear
theorem
for
o,
p1,
p2,
p3,
q1,
q2,
q3,
r1,
r2,
r3 being
Element of
(ProjectiveSpace (TOP-REAL 3)) st
o <> p2 &
o <> p3 &
p2 <> p3 &
p1 <> p2 &
p1 <> p3 &
o <> q2 &
o <> q3 &
q2 <> q3 &
q1 <> q2 &
q1 <> q3 & not
o,
p1,
q1 are_collinear &
o,
p1,
p2 are_collinear &
o,
p1,
p3 are_collinear &
o,
q1,
q2 are_collinear &
o,
q1,
q3 are_collinear &
p1,
q2,
r3 are_collinear &
q1,
p2,
r3 are_collinear &
p1,
q3,
r2 are_collinear &
p3,
q1,
r2 are_collinear &
p2,
q3,
r1 are_collinear &
p3,
q2,
r1 are_collinear holds
r1,
r2,
r3 are_collinear
theorem Th19:
for
c1,
c2,
c3,
c4,
c5,
c6,
c7,
c8,
c9,
c10 being
Element of
(ProjectiveSpace (TOP-REAL 3)) st
c1 <> c2 &
c1 <> c3 &
c2 <> c3 &
c2 <> c4 &
c3 <> c4 &
c1 <> c5 &
c1 <> c6 &
c5 <> c6 &
c5 <> c7 &
c6 <> c7 & not
c1,
c4,
c7 are_collinear &
c1,
c4,
c2 are_collinear &
c1,
c4,
c3 are_collinear &
c1,
c7,
c5 are_collinear &
c1,
c7,
c6 are_collinear &
c4,
c5,
c8 are_collinear &
c7,
c2,
c8 are_collinear &
c4,
c6,
c9 are_collinear &
c3,
c7,
c9 are_collinear &
c2,
c6,
c10 are_collinear &
c3,
c5,
c10 are_collinear holds
( not
c4,
c2,
c7 are_collinear & not
c4,
c3,
c7 are_collinear & not
c2,
c3,
c7 are_collinear & not
c4,
c2,
c5 are_collinear & not
c4,
c2,
c6 are_collinear & not
c4,
c3,
c5 are_collinear & not
c4,
c3,
c6 are_collinear & not
c2,
c7,
c5 are_collinear & not
c2,
c7,
c6 are_collinear & not
c3,
c7,
c5 are_collinear & not
c3,
c7,
c6 are_collinear & not
c2,
c3,
c5 are_collinear & not
c2,
c3,
c6 are_collinear & not
c7,
c5,
c4 are_collinear & not
c7,
c6,
c4 are_collinear & not
c5,
c6,
c4 are_collinear & not
c5,
c6,
c2 are_collinear &
c4,
c5,
c8 are_collinear &
c4,
c6,
c9 are_collinear &
c2,
c7,
c8 are_collinear &
c2,
c6,
c10 are_collinear &
c3,
c7,
c9 are_collinear &
c3,
c5,
c10 are_collinear )
theorem
for
o,
p1,
p2,
p3,
q1,
q2,
q3,
r1,
r2,
r3 being
Element of
(ProjectiveSpace (TOP-REAL 3)) st
o <> p2 &
o <> p3 &
p2 <> p3 &
p1 <> p2 &
p1 <> p3 &
o <> q2 &
o <> q3 &
q2 <> q3 &
q1 <> q2 &
q1 <> q3 & not
o,
p1,
q1 are_collinear &
o,
p1,
p2 are_collinear &
o,
p1,
p3 are_collinear &
o,
q1,
q2 are_collinear &
o,
q1,
q3 are_collinear &
p1,
q2,
r3 are_collinear &
q1,
p2,
r3 are_collinear &
p1,
q3,
r2 are_collinear &
p3,
q1,
r2 are_collinear &
p2,
q3,
r1 are_collinear &
p3,
q2,
r1 are_collinear holds
p1,
p2,
p3,
q1,
q2,
q3,
r1,
r2,
r3 are_in_Pascal_configuration by Th19;
theorem
for
o,
p1,
p2,
p3,
q1,
q2,
q3,
r1,
r2,
r3 being
Element of
(ProjectiveSpace (TOP-REAL 3)) st
o <> p2 &
o <> p3 &
p2 <> p3 &
p1 <> p2 &
p1 <> p3 &
o <> q2 &
o <> q3 &
q2 <> q3 &
q1 <> q2 &
q1 <> q3 & not
o,
p1,
q1 are_collinear &
o,
p1,
p2 are_collinear &
o,
p1,
p3 are_collinear &
o,
q1,
q2 are_collinear &
o,
q1,
q3 are_collinear &
p1,
q2,
r3 are_collinear &
q1,
p2,
r3 are_collinear &
p1,
q3,
r2 are_collinear &
p3,
q1,
r2 are_collinear &
p2,
q3,
r1 are_collinear &
p3,
q2,
r1 are_collinear holds
r1,
r2,
r3 are_collinear