theorem Th8:
for
A,
B,
C being
Point of
(TOP-REAL 2) st
angle (
A,
B,
C)
= 0 &
A,
B,
C are_mutually_distinct & not
angle (
B,
C,
A)
= PI holds
angle (
B,
A,
C)
= PI
theorem
for
A,
B,
C,
A1 being
Point of
(TOP-REAL 2) holds
the_area_of_polygon3 (
(A + A1),
B,
C)
= ((the_area_of_polygon3 (A,B,C)) + (the_area_of_polygon3 (A1,B,C))) - (the_area_of_polygon3 ((0. (TOP-REAL 2)),B,C))
Lm1:
for A, B, C, A1, B1, C2 being Point of (TOP-REAL 2)
for lambda, mu, alpha being Real st A1 = ((1 - lambda) * B) + (lambda * C) & B1 = ((1 - mu) * C) + (mu * A) & C2 = ((1 - alpha) * A) + (alpha * A1) holds
the_area_of_polygon3 (B,B1,C2) = ((1 - mu) - (alpha * ((1 - mu) + (lambda * mu)))) * (the_area_of_polygon3 (A,B,C))
theorem
for
A,
B,
C being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle holds
(
A,
C,
B is_a_triangle &
B,
A,
C is_a_triangle &
B,
C,
A is_a_triangle &
C,
A,
B is_a_triangle &
C,
B,
A is_a_triangle ) ;
Lm2:
for A, B, C, A1, B1, C2 being Point of (TOP-REAL 2)
for lambda, mu being Real st A,B,C is_a_triangle & A1 = ((1 - lambda) * B) + (lambda * C) & B1 = ((1 - mu) * C) + (mu * A) & mu <> 1 & A,A1,C2 are_collinear & B,B1,C2 are_collinear holds
( (1 - mu) + (lambda * mu) <> 0 & ex alpha being Real st
( C2 = ((1 - alpha) * A) + (alpha * A1) & alpha = (1 - mu) / ((1 - mu) + (lambda * mu)) ) )
Lm3:
for A, B, C, A1, B1 being Point of (TOP-REAL 2)
for lambda, mu being Real st A,B,C is_a_triangle & A1 = ((1 - lambda) * B) + (lambda * C) & B1 = ((1 - mu) * C) + (mu * A) & (1 - mu) + (lambda * mu) <> 0 holds
ex C2 being Point of (TOP-REAL 2) st
( A,A1,C2 are_collinear & B,B1,C2 are_collinear )
Lm4:
for lambda, mu, nu being Real st lambda <> 1 & mu <> 1 & nu <> 1 holds
( 0 = ((lambda * mu) * nu) - (((1 - lambda) * (1 - mu)) * (1 - nu)) iff ((lambda / (1 - lambda)) * (mu / (1 - mu))) * (nu / (1 - nu)) = 1 )
Lm5:
for lambda, mu, nu being Real st mu <> 1 & 0 = ((lambda * mu) * nu) - (((1 - lambda) * (1 - mu)) * (1 - nu)) & (1 - mu) + (mu * lambda) = 0 holds
(1 - lambda) + (lambda * nu) = 0
Lm6:
for A, B, C, A1, B1, C1 being Point of (TOP-REAL 2)
for lambda, mu, nu being Real st A,B,C is_a_triangle & A1 = ((1 - lambda) * B) + (lambda * C) & B1 = ((1 - mu) * C) + (mu * A) & C1 = ((1 - nu) * A) + (nu * B) & lambda <> 1 & mu <> 1 & nu <> 1 & ( not (1 - mu) + (lambda * mu) <> 0 or not (1 - lambda) + (nu * lambda) <> 0 or not (1 - nu) + (mu * nu) <> 0 ) holds
( ((lambda / (1 - lambda)) * (mu / (1 - mu))) * (nu / (1 - nu)) = 1 iff ( Line (A,A1) is_parallel_to Line (B,B1) & Line (B,B1) is_parallel_to Line (C,C1) & Line (C,C1) is_parallel_to Line (A,A1) ) )
theorem Th17:
for
A,
B,
C,
A1,
B1,
C1 being
Point of
(TOP-REAL 2) for
lambda,
mu,
nu being
Real st
A1 = ((1 - lambda) * B) + (lambda * C) &
B1 = ((1 - mu) * C) + (mu * A) &
C1 = ((1 - nu) * A) + (nu * B) holds
the_area_of_polygon3 (
A1,
B1,
C1)
= ((((1 - lambda) * (1 - mu)) * (1 - nu)) + ((lambda * mu) * nu)) * (the_area_of_polygon3 (A,B,C))
theorem
for
A,
B,
C,
A1,
B1,
C1 being
Point of
(TOP-REAL 2) for
lambda,
mu,
nu being
Real st
A,
B,
C is_a_triangle &
A1 = ((1 - lambda) * B) + (lambda * C) &
B1 = ((1 - mu) * C) + (mu * A) &
C1 = ((1 - nu) * A) + (nu * B) &
lambda <> 1 &
mu <> 1 &
nu <> 1 holds
(
A1,
B1,
C1 are_collinear iff
((lambda / (1 - lambda)) * (mu / (1 - mu))) * (nu / (1 - nu)) = - 1 )
theorem Th19:
for
A,
B,
C,
A1,
B1,
C1,
A2,
B2,
C2 being
Point of
(TOP-REAL 2) for
lambda,
mu,
nu being
Real st
A,
B,
C is_a_triangle &
A1 = ((1 - lambda) * B) + (lambda * C) &
B1 = ((1 - mu) * C) + (mu * A) &
C1 = ((1 - nu) * A) + (nu * B) &
lambda <> 1 &
mu <> 1 &
nu <> 1 &
A,
A1,
B2,
C2 are_collinear &
B,
B1,
A2,
C2 are_collinear &
C,
C1,
A2,
B2 are_collinear holds
(
(((1 - mu) + (lambda * mu)) * ((1 - lambda) + (nu * lambda))) * ((1 - nu) + (mu * nu)) <> 0 &
the_area_of_polygon3 (
A2,
B2,
C2)
= (((((mu * nu) * lambda) - (((1 - mu) * (1 - nu)) * (1 - lambda))) ^2) / ((((1 - mu) + (lambda * mu)) * ((1 - lambda) + (nu * lambda))) * ((1 - nu) + (mu * nu)))) * (the_area_of_polygon3 (A,B,C)) )
theorem
for
A,
B,
C,
A1,
B1,
C1,
A2,
B2,
C2 being
Point of
(TOP-REAL 2) st
A,
B,
C is_a_triangle &
A1 = ((2 / 3) * B) + ((1 / 3) * C) &
B1 = ((2 / 3) * C) + ((1 / 3) * A) &
C1 = ((2 / 3) * A) + ((1 / 3) * B) &
A,
A1,
B2,
C2 are_collinear &
B,
B1,
A2,
C2 are_collinear &
C,
C1,
A2,
B2 are_collinear holds
the_area_of_polygon3 (
A2,
B2,
C2)
= (the_area_of_polygon3 (A,B,C)) / 7
Lm7:
for A, B, C, A1, B1, C1, A2, B2, C2 being Point of (TOP-REAL 2)
for lambda, mu, nu being Real st A,B,C is_a_triangle & A1 = ((1 - lambda) * B) + (lambda * C) & B1 = ((1 - mu) * C) + (mu * A) & C1 = ((1 - nu) * A) + (nu * B) & lambda <> 1 & mu <> 1 & nu <> 1 & A,A1,B2,C2 are_collinear & B,B1,A2,C2 are_collinear & C,C1,A2,B2 are_collinear holds
( ((lambda / (1 - lambda)) * (mu / (1 - mu))) * (nu / (1 - nu)) = 1 iff A2,B2,C2 are_collinear )
theorem Th21:
for
A,
B,
C,
A1,
B1,
C1 being
Point of
(TOP-REAL 2) for
lambda,
mu,
nu being
Real st
A,
B,
C is_a_triangle &
A1 = ((1 - lambda) * B) + (lambda * C) &
B1 = ((1 - mu) * C) + (mu * A) &
C1 = ((1 - nu) * A) + (nu * B) &
lambda <> 1 &
mu <> 1 &
nu <> 1 &
(1 - mu) + (lambda * mu) <> 0 &
(1 - lambda) + (nu * lambda) <> 0 &
(1 - nu) + (mu * nu) <> 0 holds
(
((lambda / (1 - lambda)) * (mu / (1 - mu))) * (nu / (1 - nu)) = 1 iff ex
A2 being
Point of
(TOP-REAL 2) st
(
A,
A1,
A2 are_collinear &
B,
B1,
A2 are_collinear &
C,
C1,
A2 are_collinear ) )
theorem
for
A,
B,
C,
A1,
B1,
C1 being
Point of
(TOP-REAL 2) for
lambda,
mu,
nu being
Real st
A,
B,
C is_a_triangle &
A1 = ((1 - lambda) * B) + (lambda * C) &
B1 = ((1 - mu) * C) + (mu * A) &
C1 = ((1 - nu) * A) + (nu * B) &
lambda <> 1 &
mu <> 1 &
nu <> 1 holds
(
((lambda / (1 - lambda)) * (mu / (1 - mu))) * (nu / (1 - nu)) = 1 iff
Line (
A,
A1),
Line (
B,
B1),
Line (
C,
C1)
are_concurrent )