Lm1:
for a being Variable holds a . 1 = 0
Lm2:
for p being Element of GRZ-ops holds
( dom p = Seg 1 & p . 1 <> 0 )
Lm3:
for p being Element of GRZ-symbols holds
( p . 1 = 0 iff p in VAR )
Lm4:
for a being object holds
( not a in VAR or not a in GRZ-ops )
Th3:
( not GRZ-symbols is trivial & GRZ-symbols is antichain-like )
Lm10:
for a being object st a in GRZ-ops holds
GRZ-arity . a = GRZ-op-arity . a
definition
existence
ex b1 being non empty Subset of GRZ-formula-set st
for a being object holds
( a in b1 iff ex t, u, v being GRZ-formula st
( a = 'not' (t '&' ('not' t)) or a = ('not' ('not' t)) '=' t or a = t '=' (t '&' t) or a = (t '&' u) '=' (u '&' t) or a = (t '&' (u '&' v)) '=' ((t '&' u) '&' v) or a = (t '&' (u 'or' v)) '=' ((t '&' u) 'or' (t '&' v)) or a = ('not' (t '&' u)) '=' (('not' t) 'or' ('not' u)) or a = (t '=' u) '=' (u '=' t) or a = (t '=' u) '=' (('not' t) '=' ('not' u)) ) )
uniqueness
for b1, b2 being non empty Subset of GRZ-formula-set st ( for a being object holds
( a in b1 iff ex t, u, v being GRZ-formula st
( a = 'not' (t '&' ('not' t)) or a = ('not' ('not' t)) '=' t or a = t '=' (t '&' t) or a = (t '&' u) '=' (u '&' t) or a = (t '&' (u '&' v)) '=' ((t '&' u) '&' v) or a = (t '&' (u 'or' v)) '=' ((t '&' u) 'or' (t '&' v)) or a = ('not' (t '&' u)) '=' (('not' t) 'or' ('not' u)) or a = (t '=' u) '=' (u '=' t) or a = (t '=' u) '=' (('not' t) '=' ('not' u)) ) ) ) & ( for a being object holds
( a in b2 iff ex t, u, v being GRZ-formula st
( a = 'not' (t '&' ('not' t)) or a = ('not' ('not' t)) '=' t or a = t '=' (t '&' t) or a = (t '&' u) '=' (u '&' t) or a = (t '&' (u '&' v)) '=' ((t '&' u) '&' v) or a = (t '&' (u 'or' v)) '=' ((t '&' u) 'or' (t '&' v)) or a = ('not' (t '&' u)) '=' (('not' t) 'or' ('not' u)) or a = (t '=' u) '=' (u '=' t) or a = (t '=' u) '=' (('not' t) '=' ('not' u)) ) ) ) holds
b1 = b2
existence
ex b1 being non empty Subset of GRZ-formula-set st
for a being object holds
( a in b1 iff ex t, u, v being GRZ-formula st
( a = (t '=' u) => ((t '&' v) '=' (u '&' v)) or a = (t '=' u) => ((t 'or' v) '=' (u 'or' v)) or a = (t '=' u) => ((t '=' v) '=' (u '=' v)) ) )
uniqueness
for b1, b2 being non empty Subset of GRZ-formula-set st ( for a being object holds
( a in b1 iff ex t, u, v being GRZ-formula st
( a = (t '=' u) => ((t '&' v) '=' (u '&' v)) or a = (t '=' u) => ((t 'or' v) '=' (u 'or' v)) or a = (t '=' u) => ((t '=' v) '=' (u '=' v)) ) ) ) & ( for a being object holds
( a in b2 iff ex t, u, v being GRZ-formula st
( a = (t '=' u) => ((t '&' v) '=' (u '&' v)) or a = (t '=' u) => ((t 'or' v) '=' (u 'or' v)) or a = (t '=' u) => ((t '=' v) '=' (u '=' v)) ) ) ) holds
b1 = b2
end;
definition
coherence
{ [{t,(t '=' u)},u] where t, u is GRZ-formula : verum } is GRZ-rule
coherence
{ [{t,u},(t '&' u)] where t, u is GRZ-formula : verum } is GRZ-rule
coherence
{ [{(t '&' u)},t] where t, u is GRZ-formula : verum } is GRZ-rule
coherence
{ [{(t '&' u)},u] where t, u is GRZ-formula : verum } is GRZ-rule
end;
Lm40:
for p, q being FinSequence
for k, m being Element of NAT st k in dom p & m in dom q & m < k holds
m in dom p
Lm41:
for A being non empty Subset of GRZ-formula-set
for R being GRZ-rule
for P, P1, P2 being GRZ-formula-sequence
for n being Element of NAT st n in dom P & P ^ P1,n is_a_correct_step_wrt A,R holds
P ^ P2,n is_a_correct_step_wrt A,R
Lm44:
for A, A1 being non empty Subset of GRZ-formula-set
for R, R1 being GRZ-rule
for P being GRZ-formula-sequence
for k being Element of NAT st A c= A1 & R c= R1 & P,k is_a_correct_step_wrt A,R holds
P,k is_a_correct_step_wrt A1,R1
;
scheme
BinReplace{
F1()
-> non
empty set ,
F2(
Element of
F1(),
Element of
F1())
-> Element of
F1(),
P1[
Element of
F1(),
Element of
F1()] } :
for
a,
b,
c,
d being
Element of
F1() st
P1[
a,
b] &
P1[
c,
d] holds
P1[
F2(
a,
c),
F2(
b,
d)]
provided
A2:
for
a,
b,
c being
Element of
F1() st
P1[
a,
b] &
P1[
b,
c] holds
P1[
a,
c]
and A3:
for
a,
b being
Element of
F1() holds
P1[
F2(
a,
b),
F2(
b,
a)]
and A4:
for
a,
b,
c being
Element of
F1() st
P1[
a,
b] holds
P1[
F2(
a,
c),
F2(
b,
c)]
Lm77a:
for t, u, v being GRZ-formula st t '=' u is LD-provable holds
(t '&' v) '=' (u '&' v) is LD-provable
Lm78a:
for t, u, v being GRZ-formula st t '=' u is LD-provable holds
(t '=' v) '=' (u '=' v) is LD-provable
scheme
BinOpCongr{
F1()
-> non
empty set ,
F2(
Element of
F1(),
Element of
F1())
-> Element of
F1(),
F3()
-> Equivalence_Relation of
F1() } :
provided
A1:
for
x1,
x2,
y1,
y2 being
Element of
F1() st
[x1,x2] in F3() &
[y1,y2] in F3() holds
[F2(x1,y1),F2(x2,y2)] in F3()
definition
let x be
LD-EqClass;
existence
ex b1 being LD-EqClass ex t being GRZ-formula st
( x = LD-EqClassOf t & b1 = LD-EqClassOf ('not' t) )
uniqueness
for b1, b2 being LD-EqClass st ex t being GRZ-formula st
( x = LD-EqClassOf t & b1 = LD-EqClassOf ('not' t) ) & ex t being GRZ-formula st
( x = LD-EqClassOf t & b2 = LD-EqClassOf ('not' t) ) holds
b1 = b2
involutiveness
for b1, b2 being LD-EqClass st ex t being GRZ-formula st
( b2 = LD-EqClassOf t & b1 = LD-EqClassOf ('not' t) ) holds
ex t being GRZ-formula st
( b1 = LD-EqClassOf t & b2 = LD-EqClassOf ('not' t) )
let y be
LD-EqClass;
existence
ex b1 being LD-EqClass ex t, u being GRZ-formula st
( x = LD-EqClassOf t & y = LD-EqClassOf u & b1 = LD-EqClassOf (t '&' u) )
uniqueness
for b1, b2 being LD-EqClass st ex t, u being GRZ-formula st
( x = LD-EqClassOf t & y = LD-EqClassOf u & b1 = LD-EqClassOf (t '&' u) ) & ex t, u being GRZ-formula st
( x = LD-EqClassOf t & y = LD-EqClassOf u & b2 = LD-EqClassOf (t '&' u) ) holds
b1 = b2
commutativity
for b1, x, y being LD-EqClass st ex t, u being GRZ-formula st
( x = LD-EqClassOf t & y = LD-EqClassOf u & b1 = LD-EqClassOf (t '&' u) ) holds
ex t, u being GRZ-formula st
( y = LD-EqClassOf t & x = LD-EqClassOf u & b1 = LD-EqClassOf (t '&' u) )
idempotence
for x being LD-EqClass ex t, u being GRZ-formula st
( x = LD-EqClassOf t & x = LD-EqClassOf u & x = LD-EqClassOf (t '&' u) )
existence
ex b1 being LD-EqClass ex t, u being GRZ-formula st
( x = LD-EqClassOf t & y = LD-EqClassOf u & b1 = LD-EqClassOf (t '=' u) )
uniqueness
for b1, b2 being LD-EqClass st ex t, u being GRZ-formula st
( x = LD-EqClassOf t & y = LD-EqClassOf u & b1 = LD-EqClassOf (t '=' u) ) & ex t, u being GRZ-formula st
( x = LD-EqClassOf t & y = LD-EqClassOf u & b2 = LD-EqClassOf (t '=' u) ) holds
b1 = b2
commutativity
for b1, x, y being LD-EqClass st ex t, u being GRZ-formula st
( x = LD-EqClassOf t & y = LD-EqClassOf u & b1 = LD-EqClassOf (t '=' u) ) holds
ex t, u being GRZ-formula st
( y = LD-EqClassOf t & x = LD-EqClassOf u & b1 = LD-EqClassOf (t '=' u) )
end;
:: The Construction of Grzegorczyk's LD Language
::