sqrt 5 > sqrt (2 ^2)
by SQUARE_1:27;
then SQRT2:
2 < sqrt 5
by SQUARE_1:22;
then SQRT3:
1 / (sqrt 5) < 1 / 2
by XREAL_1:76;
definition
let a0,
b0,
c0 be
Real;
existence
ex b1 being Function of [:INT,INT:],REAL st
for x, y being Integer holds b1 . (x,y) = ((a0 * x) + (b0 * y)) + c0
uniqueness
for b1, b2 being Function of [:INT,INT:],REAL st ( for x, y being Integer holds b1 . (x,y) = ((a0 * x) + (b0 * y)) + c0 ) & ( for x, y being Integer holds b2 . (x,y) = ((a0 * x) + (b0 * y)) + c0 ) holds
b1 = b2
end;
theorem Th46:
for
a1,
a2,
b1,
b2,
c1,
c2 being
Element of
REAL for
eps being
positive Real st
|.((a1 * b2) - (a2 * b1)).| <> 0 &
a1 / b1 is
irrational holds
ex
x,
y being
Element of
INT st
(
|.((LF (a1,b1,c1)) . (x,y)).| * |.((LF (a2,b2,c2)) . (x,y)).| < |.((a1 * b2) - (a2 * b1)).| / 4 &
|.((LF (a1,b1,c1)) . (x,y)).| < eps )
theorem Th47:
for
a1,
a2,
b1,
b2,
c1,
c2 being
Element of
REAL for
eps being
positive Real st
|.((a1 * b2) - (a2 * b1)).| <> 0 &
a2 / b2 is
irrational holds
ex
x,
y being
Element of
INT st
(
|.((LF (a2,b2,c2)) . (x,y)).| * |.((LF (a1,b1,c1)) . (x,y)).| < |.((a1 * b2) - (a2 * b1)).| / 4 &
|.((LF (a2,b2,c2)) . (x,y)).| < eps )
theorem Th48:
for
a1,
a2,
b1,
b2,
c1,
c2 being
Element of
REAL st
ZeroPointSet (LF (a1,b1,c1)) <> {} holds
ex
x,
y being
Element of
INT st
|.((LF (a1,b1,c1)) . (x,y)).| * |.((LF (a2,b2,c2)) . (x,y)).| <= |.((a1 * b2) - (a2 * b1)).| / 4
theorem Th49:
for
a1,
a2,
b1,
b2,
c1,
c2 being
Element of
REAL st
ZeroPointSet (LF (a2,b2,c2)) <> {} holds
ex
x,
y being
Element of
INT st
|.((LF (a1,b1,c1)) . (x,y)).| * |.((LF (a2,b2,c2)) . (x,y)).| <= |.((a1 * b2) - (a2 * b1)).| / 4
theorem Th50:
for
a1,
a2,
b1,
b2,
c1,
c2 being
Element of
REAL st
|.((a1 * b2) - (a2 * b1)).| <> 0 &
b1 <> 0 &
a1 / b1 is
rational holds
ex
x,
y being
Element of
INT st
|.((LF (a1,b1,c1)) . (x,y)).| * |.((LF (a2,b2,c2)) . (x,y)).| <= |.((a1 * b2) - (a2 * b1)).| / 4
theorem Th51:
for
a1,
a2,
b1,
b2,
c1,
c2 being
Element of
REAL st
|.((a1 * b2) - (a2 * b1)).| <> 0 &
b2 <> 0 &
a2 / b2 is
rational holds
ex
x,
y being
Element of
INT st
|.((LF (a1,b1,c1)) . (x,y)).| * |.((LF (a2,b2,c2)) . (x,y)).| <= |.((a1 * b2) - (a2 * b1)).| / 4
theorem Th52:
for
a1,
a2,
b1,
b2,
c1,
c2 being
Element of
REAL st
|.((a1 * b2) - (a2 * b1)).| <> 0 &
b1 = 0 holds
ex
x,
y being
Element of
INT st
|.((LF (a1,b1,c1)) . (x,y)).| * |.((LF (a2,b2,c2)) . (x,y)).| <= |.((a1 * b2) - (a2 * b1)).| / 4
theorem
for
a1,
a2,
b1,
b2,
c1,
c2 being
Element of
REAL st
|.((a1 * b2) - (a2 * b1)).| <> 0 holds
ex
x,
y being
Element of
INT st
|.((LF (a1,b1,c1)) . (x,y)).| * |.((LF (a2,b2,c2)) . (x,y)).| <= |.((a1 * b2) - (a2 * b1)).| / 4