theorem
for
S being non
empty TopSpace for
T being
LinearTopSpace holds
RLSStruct(#
(ContinuousFunctions (S,T)),
(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is
Subspace of
RealVectSpace ( the
carrier of
S,
T)
by Th5, RSSPACE:11;
registration
let S be non
empty TopSpace;
let T be
LinearTopSpace;
cluster RLSStruct(#
(ContinuousFunctions (S,T)),
(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #)
-> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;
coherence
( RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is Abelian & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is add-associative & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is right_zeroed & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is right_complementable & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is vector-distributive & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is scalar-distributive & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is scalar-associative & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is scalar-unital )
by Th5, RSSPACE:11;
end;
definition
let S be non
empty TopSpace;
let T be
LinearTopSpace;
func R_VectorSpace_of_ContinuousFunctions (
S,
T)
-> strict RealLinearSpace equals
RLSStruct(#
(ContinuousFunctions (S,T)),
(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #);
coherence
RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is strict RealLinearSpace
;
end;
::
deftheorem defines
R_VectorSpace_of_ContinuousFunctions C0SP3:def 2 :
for S being non empty TopSpace
for T being LinearTopSpace holds R_VectorSpace_of_ContinuousFunctions (S,T) = RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #);
theorem
for
S,
T being
RealNormSpace holds
RLSStruct(#
(ContinuousFunctions (S,T)),
(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is
Subspace of
RealVectSpace ( the
carrier of
S,
T)
by Th11, RSSPACE:11;
registration
let S,
T be
RealNormSpace;
cluster RLSStruct(#
(ContinuousFunctions (S,T)),
(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #)
-> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;
coherence
( RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is Abelian & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is add-associative & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is right_zeroed & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is right_complementable & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is vector-distributive & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is scalar-distributive & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is scalar-associative & RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is scalar-unital )
by Th11, RSSPACE:11;
end;
definition
let S,
T be
RealNormSpace;
func R_VectorSpace_of_ContinuousFunctions (
S,
T)
-> strict RealLinearSpace equals
RLSStruct(#
(ContinuousFunctions (S,T)),
(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #);
coherence
RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #) is strict RealLinearSpace
;
end;
::
deftheorem defines
R_VectorSpace_of_ContinuousFunctions C0SP3:def 4 :
for S, T being RealNormSpace holds R_VectorSpace_of_ContinuousFunctions (S,T) = RLSStruct(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))) #);
Lm1:
for X being RealNormSpace
for r being Real
for x being Point of X holds { y where y is Point of X : ||.(x - y).|| < r } = { y where y is Point of X : ||.(y - x).|| < r }
Lm2:
for S being non empty TopSpace
for T being NormedLinearTopSpace
for f being Function of S,T
for Y being Subset of S st Y <> {} & Y c= dom f & Y is compact & f is continuous holds
ex K being Real st
( 0 <= K & ( for x being Point of S st x in Y holds
||.(f . x).|| <= K ) )
definition
let S be non
empty compact TopSpace;
let T be
NormedLinearTopSpace;
func R_NormSpace_of_ContinuousFunctions (
S,
T)
-> strict NORMSTR equals
NORMSTR(#
(ContinuousFunctions (S,T)),
(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),
(ContinuousFunctionsNorm (S,T)) #);
correctness
coherence
NORMSTR(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(ContinuousFunctionsNorm (S,T)) #) is strict NORMSTR ;
;
end;
::
deftheorem defines
R_NormSpace_of_ContinuousFunctions C0SP3:def 8 :
for S being non empty compact TopSpace
for T being NormedLinearTopSpace holds R_NormSpace_of_ContinuousFunctions (S,T) = NORMSTR(# (ContinuousFunctions (S,T)),(Zero_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Add_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(Mult_ ((ContinuousFunctions (S,T)),(RealVectSpace ( the carrier of S,T)))),(ContinuousFunctionsNorm (S,T)) #);
definition
let X be non
empty TopSpace;
let T be
NormedLinearTopSpace;
func R_VectorSpace_of_C_0_Functions (
X,
T)
-> RealLinearSpace equals
RLSStruct(#
(C_0_Functions (X,T)),
(Zero_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),
(Add_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),
(Mult_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))) #);
correctness
coherence
RLSStruct(# (C_0_Functions (X,T)),(Zero_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),(Add_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),(Mult_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))) #) is RealLinearSpace;
by RSSPACE:11;
end;
::
deftheorem defines
R_VectorSpace_of_C_0_Functions C0SP3:def 11 :
for X being non empty TopSpace
for T being NormedLinearTopSpace holds R_VectorSpace_of_C_0_Functions (X,T) = RLSStruct(# (C_0_Functions (X,T)),(Zero_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),(Add_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),(Mult_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))) #);
definition
let X be non
empty TopSpace;
let T be
NormedLinearTopSpace;
func R_Normed_Space_of_C_0_Functions (
X,
T)
-> NORMSTR equals
NORMSTR(#
(C_0_Functions (X,T)),
(Zero_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),
(Add_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),
(Mult_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),
(C_0_FunctionsNorm (X,T)) #);
correctness
coherence
NORMSTR(# (C_0_Functions (X,T)),(Zero_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),(Add_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),(Mult_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),(C_0_FunctionsNorm (X,T)) #) is NORMSTR ;
;
end;
::
deftheorem defines
R_Normed_Space_of_C_0_Functions C0SP3:def 13 :
for X being non empty TopSpace
for T being NormedLinearTopSpace holds R_Normed_Space_of_C_0_Functions (X,T) = NORMSTR(# (C_0_Functions (X,T)),(Zero_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),(Add_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),(Mult_ ((C_0_Functions (X,T)),(RealVectSpace ( the carrier of X,T)))),(C_0_FunctionsNorm (X,T)) #);
registration
let X be non
empty TopSpace;
let T be
NormedLinearTopSpace;
coherence
( R_Normed_Space_of_C_0_Functions (X,T) is reflexive & R_Normed_Space_of_C_0_Functions (X,T) is discerning & R_Normed_Space_of_C_0_Functions (X,T) is RealNormSpace-like & R_Normed_Space_of_C_0_Functions (X,T) is vector-distributive & R_Normed_Space_of_C_0_Functions (X,T) is scalar-distributive & R_Normed_Space_of_C_0_Functions (X,T) is scalar-associative & R_Normed_Space_of_C_0_Functions (X,T) is scalar-unital & R_Normed_Space_of_C_0_Functions (X,T) is Abelian & R_Normed_Space_of_C_0_Functions (X,T) is add-associative & R_Normed_Space_of_C_0_Functions (X,T) is right_zeroed & R_Normed_Space_of_C_0_Functions (X,T) is right_complementable )
end;