Journal of Formalized Mathematics
Volume 8, 1996
University of Bialystok
Copyright (c) 1996
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Yatsuka Nakamura,
and
- Andrzej Trybulec
- Received July 22, 1996
- MML identifier: GOBRD12
- [
Mizar article,
MML identifier index
]
environ
vocabulary PRE_TOPC, SEQM_3, GOBOARD5, ARYTM_3, EUCLID, MCART_1, RELAT_1,
SUBSET_1, TOPREAL1, FINSEQ_1, GOBOARD2, TREES_1, TOPS_1, BOOLE, CONNSP_3,
RELAT_2, GOBOARD9, CONNSP_1, TARSKI, MATRIX_1, ARYTM_1, GOBRD10, FUNCT_1,
FINSEQ_4;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, TOPREAL1, GOBOARD1, NUMBERS,
XREAL_0, STRUCT_0, REAL_1, NAT_1, BINARITH, PRE_TOPC, FUNCT_1, FINSEQ_1,
FINSEQ_4, MATRIX_1, TOPS_1, CONNSP_1, EUCLID, GOBOARD2, GOBOARD5,
GOBOARD9, CONNSP_3, GOBRD10;
constructors REAL_1, BINARITH, TOPS_1, CONNSP_1, GOBOARD2, GOBOARD9, CONNSP_3,
GOBRD10, FINSEQ_4, MEMBERED;
clusters SUBSET_1, GOBOARD5, RELSET_1, PRE_TOPC, GOBOARD2, EUCLID, XREAL_0,
GOBRD11, NAT_1, MEMBERED;
requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM;
begin
reserve i,j,k,k1,k2,i1,i2,j1,j2 for Nat,
r,s for Real,
x for set,
f for non constant standard special_circular_sequence;
canceled;
theorem :: GOBRD12:2
for i,j st i<=len GoB f & j<=width GoB f
holds Int cell(GoB f,i,j)c=(L~f)`;
theorem :: GOBRD12:3
for i,j st i<=len GoB f & j<=width GoB f holds
Cl Down(Int cell(GoB f,i,j),(L~f)`)=cell(GoB f,i,j)/\((L~f)`);
theorem :: GOBRD12:4
for i,j st i<=len GoB f & j<=width GoB f holds
Cl Down(Int cell(GoB f,i,j),(L~f)`) is connected
& Down(Int cell(GoB f,i,j),(L~f)`)=Int cell(GoB f,i,j);
theorem :: GOBRD12:5
(L~f)`=union {Cl Down(Int cell(GoB f,i,j),(L~f)`):
i<=len GoB f & j<=width GoB f};
theorem :: GOBRD12:6
Down(LeftComp f,(L~f)`) \/ Down(RightComp f,(L~f)`)
is a_union_of_components of (TOP-REAL 2)|((L~f)`)
& Down(LeftComp f,(L~f)`)=LeftComp f & Down(RightComp f,(L~f)`)=RightComp f;
theorem :: GOBRD12:7
for i1,j1,i2,j2 st i1<=len GoB f & j1<=width GoB f
& i2<=len GoB f & j2<=width GoB f & i1,j1,i2,j2 are_adjacent2
holds Int cell(GoB f,i1,j1) c= LeftComp f \/ RightComp f
iff Int cell(GoB f,i2,j2) c= LeftComp f \/ RightComp f;
theorem :: GOBRD12:8
for F1,F2 being FinSequence of NAT st len F1=len F2 &
(ex i st i in dom F1 & Int cell(GoB f,F1/.i,F2/.i)
c=LeftComp f \/ RightComp f)&
(for i st 1<=i & i<len F1 holds
F1/.i,F2/.i,F1/.(i+1),F2/.(i+1) are_adjacent2)&
(for i,k1,k2 st i in dom F1 & k1=F1.i & k2=F2.i holds
k1<=len GoB f & k2<=width GoB f)
holds (for i st i in dom F1 holds
Int cell(GoB f,F1/.i,F2/.i)c=LeftComp f \/ RightComp f);
theorem :: GOBRD12:9
ex i,j st i<=len GoB f & j<=width GoB f &
Int cell(GoB f,i,j) c= LeftComp f \/ RightComp f;
theorem :: GOBRD12:10
for i,j st i<=len GoB f & j<=width GoB f holds
Int cell(GoB f,i,j) c= LeftComp f \/ RightComp f;
theorem :: GOBRD12:11
(L~f)`=LeftComp f \/ RightComp f;
Back to top