Journal of Formalized Mathematics
Volume 8, 1996
University of Bialystok
Copyright (c) 1996
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Yatsuka Nakamura,
and
- Andrzej Trybulec
- Received July 22, 1996
- MML identifier: GOBRD11
- [
Mizar article,
MML identifier index
]
environ
vocabulary PRE_TOPC, SQUARE_1, RELAT_2, CONNSP_1, SETFAM_1, TARSKI, BOOLE,
CONNSP_3, SEQM_3, GOBOARD5, MATRIX_1, EUCLID, TOPREAL1, SUBSET_1,
ARYTM_3, GOBOARD2, TREES_1, ARYTM_1, FINSEQ_1, MCART_1, GOBOARD1,
METRIC_1, TOPS_1, PCOMPS_1, RELAT_1, FUNCT_1, ARYTM;
notation TARSKI, XBOOLE_0, SUBSET_1, TOPREAL1, GOBOARD1, ORDINAL1, XREAL_0,
REAL_1, NAT_1, SQUARE_1, BINARITH, STRUCT_0, PRE_TOPC, FINSEQ_1,
MATRIX_1, METRIC_1, TOPS_1, CONNSP_1, PCOMPS_1, EUCLID, GOBOARD2,
GOBOARD5, CONNSP_3;
constructors REAL_1, SQUARE_1, BINARITH, TOPS_1, CONNSP_1, PCOMPS_1, GOBOARD2,
GOBOARD9, CONNSP_3, MEMBERED;
clusters STRUCT_0, GOBOARD5, RELSET_1, PRE_TOPC, GOBOARD2, EUCLID, TOPREAL1,
XREAL_0, ARYTM_3, GOBOARD1, MEMBERED, ZFMISC_1;
requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;
begin
reserve i,j,k for Nat,
r,s,r1,r2,s1,s2,sb,tb for Real,
x for set,
GX for non empty TopSpace;
theorem :: GOBRD11:1
for A being Subset of GX, p being Point of GX st
p in A & A is connected holds A c= skl p;
theorem :: GOBRD11:2
for A,B,C being Subset of GX
st C is_a_component_of GX
& A c= C & B is connected & Cl A meets Cl B holds B c= C;
reserve GZ for non empty TopSpace;
theorem :: GOBRD11:3
for A,B being Subset of GZ st A is_a_component_of GZ &
B is_a_component_of GZ holds A \/ B is a_union_of_components of GZ;
theorem :: GOBRD11:4
for B1,B2,V being Subset of GX
holds Down(B1 \/ B2,V)=Down(B1,V) \/ Down(B2,V);
theorem :: GOBRD11:5
for B1,B2,V being Subset of GX
holds Down(B1 /\ B2,V)=Down(B1,V) /\ Down(B2,V);
reserve f for non constant standard special_circular_sequence,
G for non empty-yielding Matrix of TOP-REAL 2;
theorem :: GOBRD11:6
(L~f)` <> {};
definition let f;
cluster (L~f)` -> non empty;
end;
theorem :: GOBRD11:7
for f holds the carrier of TOP-REAL 2 =
union {cell(GoB f,i,j):i<=len GoB f & j<=width GoB f};
theorem :: GOBRD11:8
for P1,P2 being Subset of TOP-REAL 2 st
P1={ |[r,s]| : s <= s1 } & P2={ |[r2,s2]| : s2 > s1 }
holds P1=P2`;
theorem :: GOBRD11:9
for P1,P2 being Subset of TOP-REAL 2 st
P1={ |[r,s]| : s >= s1 } & P2={ |[r2,s2]| : s2 < s1 }
holds P1=P2`;
theorem :: GOBRD11:10
for P1,P2 being Subset of TOP-REAL 2 st
P1={ |[s,r]| : s >= s1 } & P2={ |[s2,r2]| : s2 < s1 }
holds P1=P2`;
theorem :: GOBRD11:11
for P1,P2 being Subset of TOP-REAL 2 st
P1={ |[s,r]| : s <= s1 } & P2={ |[s2,r2]| : s2 > s1 }
holds P1=P2`;
theorem :: GOBRD11:12
for P being Subset of TOP-REAL 2, s1
st P= { |[r,s]| : s <= s1 } holds P is closed;
theorem :: GOBRD11:13
for P being Subset of TOP-REAL 2,s1
st P={ |[r,s]| : s1 <= s } holds P is closed;
theorem :: GOBRD11:14
for P being Subset of TOP-REAL 2, s1
st P= { |[s,r]| : s <= s1 } holds P is closed;
theorem :: GOBRD11:15
for P being Subset of TOP-REAL 2,s1
st P={ |[s,r]| : s1 <= s } holds P is closed;
theorem :: GOBRD11:16
for G being Matrix of TOP-REAL 2 holds h_strip(G,j) is closed;
theorem :: GOBRD11:17
for G being Matrix of TOP-REAL 2 holds v_strip(G,j) is closed;
theorem :: GOBRD11:18
G is X_equal-in-line implies
v_strip(G,0) = { |[r,s]| : r <= G*(1,1)`1 };
theorem :: GOBRD11:19
G is X_equal-in-line implies
v_strip(G,len G) = { |[r,s]| : G*(len G,1)`1 <= r };
theorem :: GOBRD11:20
G is X_equal-in-line & 1 <= i & i < len G
implies v_strip(G,i) = { |[r,s]| : G*(i,1)`1 <= r & r <= G*(i+1,1)`1 };
theorem :: GOBRD11:21
G is Y_equal-in-column implies
h_strip(G,0) = { |[r,s]| : s <= G*(1,1)`2 };
theorem :: GOBRD11:22
G is Y_equal-in-column implies
h_strip(G,width G) = { |[r,s]| : G*(1,width G)`2 <= s };
theorem :: GOBRD11:23
G is Y_equal-in-column & 1 <= j & j < width G
implies h_strip(G,j) = { |[r,s]| : G*(1,j)`2 <= s & s <= G*(1,j+1)`2 };
reserve G for non empty-yielding X_equal-in-line Y_equal-in-column
Matrix of TOP-REAL 2;
theorem :: GOBRD11:24
cell(G,0,0) = { |[r,s]| : r <= G*(1,1)`1 & s <= G*(1,1)`2 };
theorem :: GOBRD11:25
cell(G,0,width G) = { |[r,s]| : r <= G*(1,1)`1 & G*(1,width G)`2 <= s };
theorem :: GOBRD11:26
1 <= j & j < width G implies cell(G,0,j)
= { |[r,s]| : r <= G*(1,1)`1 & G*(1,j)`2 <= s & s <= G*(1,j+1)`2 };
theorem :: GOBRD11:27
cell(G,len G,0) = { |[r,s]| : G*(len G,1)`1 <= r & s <= G*(1,1)`2 };
theorem :: GOBRD11:28
cell(G,len G,width G)
= { |[r,s]| : G*(len G,1)`1 <= r & G*(1,width G)`2 <= s };
theorem :: GOBRD11:29
1 <= j & j < width G implies cell(G,len G,j)
= { |[r,s]| : G*(len G,1)`1 <= r & G*(1,j)`2 <= s & s <= G*(1,j+1)`2 };
theorem :: GOBRD11:30
1 <= i & i < len G implies
cell(G,i,0) = { |[r,s]|: G*(i,1)`1 <= r & r <= G*(i+1,1)`1 & s <= G*
(1,1)`2 };
theorem :: GOBRD11:31
1 <= i & i < len G implies cell(G,i,width G)
= { |[r,s]|: G*(i,1)`1 <= r & r <= G*(i+1,1)`1 & G*(1,width G)`2 <= s };
theorem :: GOBRD11:32
1 <= i & i < len G & 1 <= j & j < width G
implies cell(G,i,j) =
{ |[r,s]| : G*(i,1)`1 <= r & r <= G*(i+1,1)`1 &
G*(1,j)`2 <= s & s <= G*(1,j+1)`2 };
theorem :: GOBRD11:33
for G being Matrix of TOP-REAL 2 holds cell(G,i,j) is closed;
theorem :: GOBRD11:34
for G being non empty-yielding Matrix of TOP-REAL 2 holds
1<=len G & 1<=width G;
theorem :: GOBRD11:35
for G being Go-board holds
i<=len G & j<=width G implies cell(G,i,j)=Cl Int cell(G,i,j);
Back to top