Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Henryk Oryszczyszyn,
and
- Krzysztof Prazmowski
- Received June 12, 1990
- MML identifier: TRANSLAC
- [
Mizar article,
MML identifier index
]
environ
vocabulary DIRAF, VECTSP_1, ANALOAF, PASCH, FUNCT_2, TRANSGEO, FUNCT_1, AFF_2,
INCSP_1, AFF_1, RELAT_1;
notation PARTFUN1, FUNCT_2, STRUCT_0, ANALOAF, DIRAF, AFF_1, AFF_2, TRANSGEO;
constructors AFF_1, AFF_2, TRANSGEO, MEMBERED, PARTFUN1, RELAT_2, XBOOLE_0;
clusters STRUCT_0, RELSET_1, FUNCT_2, MEMBERED, ZFMISC_1, PARTFUN1, FUNCT_1,
XBOOLE_0;
requirements SUBSET, BOOLE;
begin
reserve AS for AffinSpace,
a,b,c,d,p,q,r,s,x for Element of AS;
definition let AS;
attr AS is Fanoian means
:: TRANSLAC:def 1
for a,b,c,d st a,b // c,d & a,c // b,d & a,d // b,c
holds LIN a,b,c;
synonym AS satisfies_Fano;
end;
canceled;
theorem :: TRANSLAC:2
(ex a,b,c st LIN a,b,c & a<>b & a<>c & b<>c) implies
(for p,q st p<>q holds (ex r st LIN p,q,r & p<>r & q<>r));
reserve AFP for AffinPlane,
a,a',b,b',c,c',d,p,p',q,q',r,x,x',y,y',z
for Element of AFP,
A,C,P for Subset of AFP,
f,g,h,f1,f2 for Permutation of the carrier of AFP;
canceled;
theorem :: TRANSLAC:4
(AFP satisfies_Fano &
a,b // c,d & a,c // b,d & not LIN a,b,c) implies ex p st LIN b,c,p & LIN a,d,p
;
theorem :: TRANSLAC:5
f is_Tr & not LIN a,f.a,x & a,f.a // x,y & a,x // f.a,y
implies y=f.x;
theorem :: TRANSLAC:6
AFP satisfies_des iff
(for a,a',b,c,b',c' st not LIN a,a',b & not LIN a,a',c & a,a' // b,b' &
a,a' // c,c' & a,b // a',b' & a,c // a',c' holds b,c // b',c');
theorem :: TRANSLAC:7
ex f st f is_Tr & f.a=a;
theorem :: TRANSLAC:8
(for p,q,r st p<>q & LIN p,q,r holds r = p or r = q) & a,b // p,q &
a,p // b,q & not LIN a,b,p implies a,q // b,p;
theorem :: TRANSLAC:9
AFP satisfies_des implies ex f st f is_Tr & f.a=b;
theorem :: TRANSLAC:10
(for a,b ex f st f is_Tr & f.a=b) implies AFP satisfies_des;
theorem :: TRANSLAC:11
f is_Tr & g is_Tr & not LIN a,f.a,g.a implies f*g=g*f;
theorem :: TRANSLAC:12
AFP satisfies_des & f is_Tr & g is_Tr implies f*g=g*f;
theorem :: TRANSLAC:13
f is_Tr & g is_Tr & p,f.p // p,g.p implies p,f.p // p,(f*g).p;
theorem :: TRANSLAC:14
AFP satisfies_Fano & AFP satisfies_des & f is_Tr
implies ex g st g is_Tr & g*g=f;
theorem :: TRANSLAC:15
AFP satisfies_Fano &
f is_Tr & f*f=id the carrier of AFP implies f=id the carrier of AFP;
theorem :: TRANSLAC:16
AFP satisfies_des & AFP satisfies_Fano &
g is_Tr & f1 is_Tr & f2 is_Tr & g=f1*f1 & g=f2*f2 implies f1=f2;
Back to top