environ vocabulary DIRAF, AFF_1, ANALOAF, INCSP_1, AFF_2; notation STRUCT_0, ANALOAF, DIRAF, AFF_1; constructors AFF_1, XBOOLE_0; clusters ZFMISC_1, XBOOLE_0; begin reserve AP for AffinPlane; reserve a,a',b,b',c,c',x,y,o,p,q,r,s for Element of AP; reserve A,C,C',D,K,M,N,P,T for Subset of AP; definition let AP; attr AP is satisfying_PPAP means :: AFF_2:def 1 for M,N,a,b,c,a',b',c' st M is_line & N is_line & a in M & b in M & c in M & a' in N & b' in N & c' in N & a,b' // b,a' & b,c' // c,b' holds a,c' // c,a'; synonym AP satisfies_PPAP; end; definition let AP be AffinSpace; attr AP is Pappian means :: AFF_2:def 2 for M,N being Subset of AP, o,a,b,c,a',b',c' being Element of AP st M is_line & N is_line & M<>N & o in M & o in N & o<>a & o<>a' & o<>b & o<>b' & o<>c & o<>c' & a in M & b in M & c in M & a' in N & b' in N & c' in N & a,b' // b,a' & b,c' // c,b' holds a,c' // c,a'; synonym AP satisfies_PAP; end; definition let AP; attr AP is satisfying_PAP_1 means :: AFF_2:def 3 for M,N,o,a,b,c,a',b',c' st M is_line & N is_line & M<>N & o in M & o in N & o<>a & o<>a' & o<>b & o<>b' & o<>c & o<>c' & a in M & b in M & c in M & b' in N & c' in N & a,b' // b,a' & b,c' // c,b' & a,c' // c,a' & b<>c holds a' in N; synonym AP satisfies_PAP_1; end; definition let AP be AffinSpace; attr AP is Desarguesian means :: AFF_2:def 4 for A,P,C being Subset of AP, o,a,b,c,a',b',c' being Element of AP st o in A & o in P & o in C & o<>a & o<>b & o<>c & a in A & a' in A & b in P & b' in P & c in C & c' in C & A is_line & P is_line & C is_line & A<>P & A<>C & a,b // a',b' & a,c // a',c' holds b,c // b',c'; synonym AP satisfies_DES; end; definition let AP; attr AP is satisfying_DES_1 means :: AFF_2:def 5 for A,P,C,o,a,b,c,a',b',c' st o in A & o in P & o<>a & o<>b & o<>c & a in A & a' in A & b in P & b' in P & c in C & c' in C & A is_line & P is_line & C is_line & A<>P & A<>C & a,b // a',b' & a,c // a',c' & b,c // b',c' & not LIN a,b,c & c <>c' holds o in C; synonym AP satisfies_DES_1; end; definition let AP; attr AP is satisfying_DES_2 means :: AFF_2:def 6 for A,P,C,o,a,b,c,a',b',c' st o in A & o in P & o in C & o<>a & o<>b & o<>c & a in A & a' in A & b in P & b' in P & c in C & A is_line & P is_line & C is_line & A<>P & A<>C & a,b // a',b' & a,c // a',c' & b,c // b',c' holds c' in C; synonym AP satisfies_DES_2; end; definition let AP be AffinSpace; attr AP is Moufangian means :: AFF_2:def 7 for K being Subset of AP, o,a,b,c,a',b',c' being Element of AP st K is_line & o in K & c in K & c' in K & not a in K & o<>c & a<>b & LIN o,a,a' & LIN o,b,b' & a,b // a',b' & a,c // a',c' & a,b // K holds b,c // b',c'; synonym AP satisfies_TDES; end; definition let AP; attr AP is satisfying_TDES_1 means :: AFF_2:def 8 for K,o,a,b,c,a',b',c' st K is_line & o in K & c in K & c' in K & not a in K & o<>c & a<>b & LIN o,a,a' & a,b // a',b' & b,c // b',c' & a,c // a',c' & a,b // K holds LIN o,b,b'; synonym AP satisfies_TDES_1; end; definition let AP; attr AP is satisfying_TDES_2 means :: AFF_2:def 9 for K,o,a,b,c,a',b',c' st K is_line & o in K & c in K & c' in K & not a in K & o<>c & a<>b & LIN o,a,a' & LIN o,b,b' & b,c // b',c' & a,c // a',c' & a,b // K holds a,b // a',b'; synonym AP satisfies_TDES_2; end; definition let AP; attr AP is satisfying_TDES_3 means :: AFF_2:def 10 for K,o,a,b,c,a',b',c' st K is_line & o in K & c in K & not a in K & o<>c & a<>b & LIN o,a,a' & LIN o,b,b' & a,b // a',b' & a,c // a',c' & b,c // b',c' & a,b // K holds c' in K; synonym AP satisfies_TDES_3; end; definition let AP be AffinSpace; attr AP is translational means :: AFF_2:def 11 for A,P,C being Subset of AP, a,b,c,a',b',c' being Element of AP st A // P & A // C & a in A & a' in A & b in P & b' in P & c in C & c' in C & A is_line & P is_line & C is_line & A<>P & A<>C & a,b // a',b' & a,c // a',c' holds b,c // b',c'; synonym AP satisfies_des; end; definition let AP; attr AP is satisfying_des_1 means :: AFF_2:def 12 for A,P,C,a,b,c,a',b',c' st A // P & a in A & a' in A & b in P & b' in P & c in C & c' in C & A is_line & P is_line & C is_line & A<>P & A<>C & a,b // a',b' & a,c // a',c' & b,c // b',c' & not LIN a,b,c & c <>c' holds A // C; synonym AP satisfies_des_1; end; definition let AP be AffinSpace; attr AP is satisfying_pap means :: AFF_2:def 13 for M,N being Subset of AP, a,b,c,a',b',c' being Element of AP st M is_line & N is_line & a in M & b in M & c in M & M // N & M<>N & a' in N & b' in N & c' in N & a,b' // b,a' & b,c' // c,b' holds a,c' // c,a'; synonym AP satisfies_pap; end; definition let AP; attr AP is satisfying_pap_1 means :: AFF_2:def 14 for M,N,a,b,c,a',b',c' st M is_line & N is_line & a in M & b in M & c in M & M // N & M<>N & a' in N & b' in N & a,b' // b,a' & b,c' // c,b' & a,c' // c,a' & a'<>b' holds c' in N; synonym AP satisfies_pap_1; end; canceled 14; theorem :: AFF_2:15 AP satisfies_PAP iff AP satisfies_PAP_1; theorem :: AFF_2:16 AP satisfies_DES iff AP satisfies_DES_1; theorem :: AFF_2:17 AP satisfies_TDES implies AP satisfies_TDES_1; theorem :: AFF_2:18 AP satisfies_TDES_1 implies AP satisfies_TDES_2; theorem :: AFF_2:19 AP satisfies_TDES_2 implies AP satisfies_TDES_3; theorem :: AFF_2:20 AP satisfies_TDES_3 implies AP satisfies_TDES; theorem :: AFF_2:21 AP satisfies_des iff AP satisfies_des_1; theorem :: AFF_2:22 AP satisfies_pap iff AP satisfies_pap_1; theorem :: AFF_2:23 AP satisfies_PAP implies AP satisfies_pap; theorem :: AFF_2:24 AP satisfies_PPAP iff AP satisfies_PAP & AP satisfies_pap; theorem :: AFF_2:25 AP satisfies_PAP implies AP satisfies_DES; theorem :: AFF_2:26 AP satisfies_DES implies AP satisfies_TDES; theorem :: AFF_2:27 AP satisfies_TDES_1 implies AP satisfies_des_1; theorem :: AFF_2:28 AP satisfies_TDES implies AP satisfies_des; theorem :: AFF_2:29 AP satisfies_des implies AP satisfies_pap;