Copyright (c) 1990 Association of Mizar Users
environ vocabulary ANALOAF, DIRAF, REALSET1, RLVECT_1, PARSP_1, ARYTM_1, AFF_2, VECTSP_1, PASCH, TRANSGEO, CONAFFM, AFF_1, RELAT_1, INCSP_1, PAPDESAF; notation SUBSET_1, STRUCT_0, RLVECT_1, REAL_1, ANALOAF, DIRAF, AFF_1, AFF_2, GEOMTRAP, TRANSLAC, REALSET1; constructors REAL_1, AFF_1, AFF_2, GEOMTRAP, TRANSLAC, XREAL_0, MEMBERED, XBOOLE_0; clusters DIRAF, STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0; requirements NUMERALS, REAL, SUBSET, ARITHM; definitions TRANSLAC; theorems REAL_1, RLVECT_1, FUNCSDOM, ANALOAF, DIRAF, AFF_1, AFF_2, PASCH, ANALMETR, GEOMTRAP, RLSUB_2, VECTSP_1, XCMPLX_0, XCMPLX_1; begin definition let OAS be OAffinSpace; cluster Lambda(OAS) -> AffinSpace-like non trivial; correctness by DIRAF:48; end; definition let OAS be OAffinPlane; cluster Lambda(OAS) -> 2-dimensional; correctness by DIRAF:53; end; canceled; theorem Th2: for OAS being OAffinSpace, x being set holds (x is Element of OAS iff x is Element of Lambda(OAS)) & (x is Subset of OAS iff x is Subset of Lambda(OAS)) proof let OAS be OAffinSpace; Lambda(OAS) = AffinStruct (#the carrier of OAS, lambda(the CONGR of OAS)#) by DIRAF:def 2; hence thesis; end; theorem Th3: for OAS being OAffinSpace holds for a,b,c being (Element of the carrier of OAS), a',b',c' being (Element of Lambda(OAS)) st a=a' & b=b' & c =c' holds LIN a,b,c iff LIN a',b',c' proof let OAS be OAffinSpace; let a,b,c be (Element of OAS), a',b',c' be (Element of Lambda(OAS)) such that A1: a=a' & b=b' & c =c'; A2: now assume LIN a',b',c'; then a',b' // a',c' by AFF_1:def 1; then a,b '||' a,c by A1,DIRAF:45; hence LIN a,b,c by DIRAF:def 5; end; now assume LIN a,b,c; then a,b '||' a,c by DIRAF:def 5; then a',b' // a', c' by A1,DIRAF:45; hence LIN a',b',c' by AFF_1:def 1; end; hence thesis by A2; end; theorem Th4: for V being RealLinearSpace, x being set holds (x is Element of OASpace(V) iff x is VECTOR of V) proof let V be RealLinearSpace, x be set; (OASpace(V)) = AffinStruct (#the carrier of V, DirPar(V)#) by ANALOAF:def 4; hence thesis; end; theorem Th5: for V being RealLinearSpace, OAS being OAffinSpace st OAS=OASpace(V) holds (for a,b,c,d being Element of OAS,u,v,w,y being VECTOR of V st a=u & b=v & c =w & d=y holds (a,b '||' c,d iff u,v '||' w,y)) proof let V be RealLinearSpace, OAS be OAffinSpace such that A1:OAS=OASpace(V); let a,b,c,d be Element of OAS,u,v,w,y be VECTOR of V; assume A2: a=u & b=v & c =w & d=y; A3: now assume a,b '||' c,d; then a,b // c,d or a,b // d,c by DIRAF:def 4; then u,v // w,y or u,v // y,w by A1,A2,GEOMTRAP:2; hence u,v '||' w,y by GEOMTRAP:def 1; end; now assume u,v '||' w,y; then u,v // w,y or u,v // y,w by GEOMTRAP:def 1; then a,b // c,d or a,b // d,c by A1,A2,GEOMTRAP:2; hence a,b '||' c,d by DIRAF:def 4; end; hence thesis by A3; end; theorem for V being RealLinearSpace, OAS being OAffinSpace st OAS=OASpace(V) holds (ex u,v being VECTOR of V st (for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0)) proof let V be RealLinearSpace, OAS be OAffinSpace such that A1: OAS = OASpace(V); consider a,b,c,d being Element of OAS such that A2: not a,b // c,d & not a,b // d,c by ANALOAF:def 5; reconsider u=a,v=b,w=c,y=d as VECTOR of V by A1,Th4; take z1=v-u,z2=y-w; now let r1,r2 be Real; assume A3: r1*z1+r2*z2 = 0.V; assume r1<>0 or r2<>0; then A4: r1<>0 or -r2<>0 by XCMPLX_1:135; r1*z1 = -(r2*z2) by A3,RLVECT_1:19 .= r2*(-z2) by RLVECT_1:39 .= (-r2)*z2 by RLVECT_1:38; then u,v // w,y or u,v // y,w by A4,ANALMETR:18; hence r1=0 & r2=0 by A1,A2,GEOMTRAP:2; end; hence thesis; end; definition let AS be AffinSpace; redefine attr AS is Pappian; synonym AS satisfies_PAP'; end; definition let AS be AffinSpace; redefine attr AS is Desarguesian; synonym AS satisfies_DES'; end; definition let AS be AffinSpace; redefine attr AS is Moufangian; synonym AS satisfies_TDES'; end; definition let AS be AffinSpace; redefine attr AS is translational; synonym AS satisfies_des'; end; definition let AS be AffinSpace; redefine canceled 4; attr AS is Fanoian means :Def5: for a,b,c,d being Element of AS st a,b // c,d & a,c // b,d & a,d // b,c holds a,b // a,c; compatibility proof thus AS is Fanoian implies for a,b,c,d being Element of AS st a,b // c,d & a,c // b,d & a,d // b,c holds a,b // a,c proof assume A1: for a,b,c,d being Element of AS st a,b // c,d & a,c // b,d & a,d // b,c holds LIN a,b,c; let a,b,c,d be Element of AS; assume a,b // c,d & a,c // b,d & a,d // b,c; then LIN a,b,c by A1; hence a,b // a,c by AFF_1:def 1; end; assume A2: for a,b,c,d being Element of AS st a,b // c,d & a,c // b,d & a,d // b,c holds a,b // a,c; let a,b,c,d be Element of AS; assume a,b // c,d & a,c // b,d & a,d // b,c; then a,b // a,c by A2; hence LIN a,b,c by AFF_1:def 1; end; synonym AS satisfies_Fano; end; definition let IT be OAffinSpace; canceled 5; attr IT is Pappian means :Def11: Lambda(IT) satisfies_PAP'; attr IT is Desarguesian means :Def12: Lambda(IT) satisfies_DES'; attr IT is Moufangian means :Def13: Lambda(IT) satisfies_TDES'; attr IT is translation means :Def14: Lambda(IT) satisfies_des'; end; definition let OAS be OAffinSpace; attr OAS is satisfying_DES means :Def15: for o,a,b,c,a1,b1,c1 being Element of OAS st (o,a // o,a1 & o,b // o,b1 & o,c // o,c1 & not LIN o,a,b & not LIN o,a,c & a,b // a1,b1 & a,c // a1,c1) holds b,c // b1,c1; synonym OAS satisfies_DES; end; definition let OAS be OAffinSpace; attr OAS is satisfying_DES_1 means :Def16: for o,a,b,c,a1,b1,c1 being Element of OAS st (a,o // o,a1 & b,o // o,b1 & c,o // o,c1 & not LIN o,a,b & not LIN o,a,c & a,b // b1,a1 & a,c // c1,a1) holds b,c // c1,b1; synonym OAS satisfies_DES_1; end; canceled 4; theorem Th11: for OAS being OAffinSpace st OAS satisfies_DES_1 holds OAS satisfies_DES proof let OAS be OAffinSpace such that A1: OAS satisfies_DES_1; for o,a,b,c,a1,b1,c1 being Element of OAS st (o,a // o,a1 & o,b // o,b1 & o,c // o,c1 & not LIN o,a,b & not LIN o,a,c & a,b // a1,b1 & a,c // a1,c1) holds b,c // b1,c1 proof let o,a,b,c,a1,b1,c1 be Element of OAS such that A2: o,a // o,a1 & o,b // o,b1 & o,c // o,c1 and A3: not LIN o,a,b & not LIN o,a,c and A4: a,b // a1,b1 & a,c // a1,c1; consider a2 being Element of OAS such that A5: Mid a,o,a2 and A6: o<>a2 by DIRAF:17; A7: o<>a & o<>b & o<>c & a<>b & a<>c by A3,DIRAF:37; A8: a,o // o,a2 by A5,DIRAF:def 3; then consider b2 being Element of OAS such that A9: b,o // o,b2 and A10: b,a // a2,b2 by A7,ANALOAF:def 5; consider c2 being Element of OAS such that A11: c,o // o,c2 and A12: c,a // a2,c2 by A7,A8,ANALOAF:def 5; a,b // b2,a2 & a,c // c2,a2 by A10,A12,ANALOAF:def 5; then A13: b,c // c2,b2 by A1,A3,A8,A9,A11,Def16; A14: a2,o // o,a & b2,o // o,b & c2,o // o,c by A8,A9,A11,DIRAF:5; then A15: a2,o // o,a1 & b2,o // o,b1 & c2,o // o,c1 by A2,A7,DIRAF:6; b2,a2 // a,b & c2,a2 // a,c by A10,A12,DIRAF:5; then b2,a2 // a1,b1 & c2,a2 // a1,c1 by A4,A7,DIRAF:6; then A16: a2,c2 // c1,a1 & a2,b2 // b1,a1 by DIRAF:5; LIN a,o,a2 by A5,DIRAF:34; then A17: LIN o,a2,a by DIRAF:36; Mid b2,o,b & Mid c2,o,c by A14,DIRAF:def 3; then A18: LIN b2,o,b & LIN c2,o,c by DIRAF:34; A19: o<>b2 proof assume o=b2; then o,a2 // a,b by A10,DIRAF:5 ; then o,a2 '||' a,b by DIRAF:def 4 ; then LIN o,a2,o & LIN o,a2,b by A6,A17,DIRAF:37,39; hence contradiction by A3,A6,A17,DIRAF:38; end; A20: not LIN o,a2,b2 proof assume A21: LIN o,a2,b2; LIN o,a2,o by DIRAF:37; then A22: LIN b2,o,a by A6,A17,A21,DIRAF:38; LIN b2,o,o by DIRAF:37; hence contradiction by A3,A18,A19,A22,DIRAF:38; end; A23: o<>c2 proof assume o=c2; then o,a2 // a,c by A12,DIRAF:5 ; then o,a2 '||' a,c by DIRAF:def 4 ; then LIN o,a2,o & LIN o,a2,c by A6,A17,DIRAF:37,39; hence contradiction by A3,A6,A17,DIRAF:38; end; not LIN o,a2,c2 proof assume A24: LIN o,a2,c2; LIN o,a2,o by DIRAF:37; then A25: LIN c2,o,a by A6,A17,A24,DIRAF:38; LIN c2,o,o by DIRAF:37; hence contradiction by A3,A18,A23,A25,DIRAF:38; end; then A26: c2,b2 // b1,c1 by A1,A15,A16,A20,Def16; now assume A27: c2=b2; A28: not LIN o,b2,a2 by A20,DIRAF:36; A29: LIN o,b2,b & LIN o,b2,c by A18,A27,DIRAF:36 ; b2,a2 // a,b & c2,a2 // a,c by A10,A12,DIRAF:5; then b2,a2 '||' a,b & b2,a2 '||' a,c by A27,DIRAF:def 4; then b=c by A17,A28,A29,PASCH:11; hence b,c // b1,c1 by DIRAF:7; end; hence thesis by A13,A26,DIRAF:6; end; hence thesis by Def15; end; theorem Th12: for OAS being OAffinSpace holds for o,a,b,a',b' being Element of the carrier of OAS st not LIN o,a,b & a,o // o,a' & LIN o,b,b' & a,b '||' a',b' holds b,o // o,b' & a,b // b',a' proof let OAS be OAffinSpace; let o,a,b,a',b' be Element of OAS such that A1: not LIN o,a,b and A2: a,o // o,a' and A3: LIN o,b,b' and A4: a,b '||' a',b'; A5: Mid a,o,a' by A2,DIRAF:def 3; a,b '||' b',a' by A4,DIRAF:27; then Mid b,o,b' by A1,A3,A5,PASCH:13; hence b,o // o,b' by DIRAF:def 3 ; hence a,b // b',a' by A1,A2,A4,PASCH:19; end; theorem Th13: for OAS being OAffinSpace holds for o,a,b,a',b' being Element of the carrier of OAS st not LIN o,a,b & o,a // o,a' & LIN o,b,b' & a,b '||' a',b' holds o,b // o,b' & a,b // a',b' proof let OAS be OAffinSpace; let o,a,b,a',b' be Element of OAS such that A1: not LIN o,a,b and A2: o,a // o,a' and A3: LIN o,b,b' and A4: a,b '||' a',b'; consider a2 being Element of OAS such that A5: Mid a,o,a2 and A6: o<>a2 by DIRAF:17; A7: a,o // o,a2 by A5,DIRAF:def 3; A8: o<>a & o<>b & b<>a by A1,DIRAF:37; then consider b2 being Element of OAS such that A9: b,o // o,b2 and A10: b,a // a2,b2 by A7,ANALOAF:def 5; LIN a,o,a2 by A5,DIRAF:34; then A11: LIN o,a2,a by DIRAF:36; Mid b,o,b2 by A9,DIRAF:def 3; then LIN b,o,b2 by DIRAF:34; then A12: LIN b2,o,b by DIRAF:36; A13: o<>b2 proof assume o=b2; then o,a2 // a,b by A10,DIRAF:5 ; then o,a2 '||' a,b by DIRAF:def 4 ; then LIN o,a2,o & LIN o,a2,b by A6,A11,DIRAF:37,39; hence contradiction by A1,A6,A11,DIRAF:38; end; A14: not LIN o,a2,b2 proof assume A15: LIN o,a2,b2; LIN o,a2,o by DIRAF:37; then A16: LIN b2,o,a by A6,A11,A15,DIRAF:38; LIN b2,o,o by DIRAF:37; hence contradiction by A1,A12,A13,A16,DIRAF:38; end; then A17: a2<>b2 by DIRAF:37; A18: a2,o // o,a' proof a,o // o,a2 by A5,DIRAF:def 3; then a2,o // o,a by DIRAF:5; hence thesis by A2,A8,DIRAF:6; end; A19: a2,b2 '||' a',b' proof a2,b2 // b,a by A10,DIRAF:5; then a2,b2 '||' a,b by DIRAF:def 4; hence thesis by A4,A8,DIRAF:28; end; LIN o,b2,b' proof Mid b,o,b2 by A9,DIRAF:def 3; then LIN b,o,b2 by DIRAF:34; then LIN o,b,b2 & LIN o,b,o by DIRAF:36,37; hence thesis by A3,A8,DIRAF:38;end; then A20: a2,b2 // b',a' & b2,o // o,b' by A14,A18,A19,Th12; o,b // b2,o by A9,DIRAF:5; hence o,b // o,b' by A13,A20,DIRAF:6; a,b // b2,a2 & b2,a2 // a',b' by A10,A20,DIRAF:5; hence a,b // a',b' by A17,DIRAF:6; end; theorem Th14: for OAP being OAffinSpace st OAP satisfies_DES_1 holds Lambda(OAP) satisfies_DES' proof let OAP be OAffinSpace; assume A1: OAP satisfies_DES_1; then A2:OAP satisfies_DES by Th11; set AP = Lambda(OAP); for A,P,C being Subset of AP, o,a,b,c,a',b',c' being Element of AP st o in A & o in P & o in C & o<>a & o<>b & o<>c & a in A & a' in A & b in P & b' in P & c in C & c' in C & A is_line & P is_line & C is_line & A<>P & A<>C & a,b // a',b' & a,c // a',c' holds b,c // b',c' proof let A,P,C be Subset of AP; let o,a,b,c,a',b',c' be Element of AP; assume that A3: o in A & o in P & o in C and A4: o<>a & o<>b & o<>c and A5: a in A & a' in A & b in P & b' in P & c in C & c' in C and A6: A is_line & P is_line & C is_line and A7: A<>P & A<>C and A8: a,b // a',b' & a,c // a',c'; reconsider o1=o,a1=a,b1=b,c1=c,a1'=a',b1'=b',c1'=c' as Element of the carrier of OAP by Th2; A9: LIN o1,a1,a1' & LIN o1,b1,b1' & LIN o1,c1,c1' proof LIN o,a,a' & LIN o,b,b' & LIN o,c,c' by A3,A5,A6,AFF_1:33; hence thesis by Th3; end; A10: not LIN o1,a1,b1 & not LIN o1,a1,c1 proof assume A11: not thesis; A12: now assume LIN o,a,b; then consider X being Subset of Lambda(OAP) such that A13: X is_line & o in X & a in X & b in X by AFF_1:33; X = P & X = A by A3,A4,A5,A6,A13,AFF_1:30; hence contradiction by A7; end; now assume LIN o,a,c; then consider X being Subset of Lambda(OAP) such that A14: X is_line & o in X & a in X & c in X by AFF_1:33; X = C & X = A by A3,A4,A5,A6,A14,AFF_1:30; hence contradiction by A7; end; hence contradiction by A11,A12,Th3; end; A15: a1,o1 // o1,a1' or o1,a1 // o1,a1' proof Mid o1,a1,a1' or Mid a1,o1,a1' or Mid o1,a1',a1 by A9,DIRAF:35; hence a1,o1 // o1,a1' or o1,a1 // o1,a1' by DIRAF:11,def 3; end; A16: a1,b1 '||' a1',b1' & a1,c1 '||' a1',c1' by A8,DIRAF:45; A17: now assume A18: a1,o1 // o1,a1'; then b1,o1 // o1,b1' & c1,o1 // o1,c1' & a1,b1 // b1',a1' & a1,c1 // c1',a1' by A9,A10,A16,Th12; then b1,c1 // c1',b1' by A1,A10,A18,Def16; then b1,c1 '||' b1',c1' by DIRAF: def 4; hence b,c // b',c' by DIRAF:45; end; now assume A19: o1,a1 // o1,a1'; then o1,b1 // o1,b1' & o1,c1 // o1,c1' & a1,b1 // a1',b1' & a1,c1 // a1',c1' by A9,A10,A16,Th13; then b1,c1 // b1',c1' by A2,A10,A19,Def15; then b1,c1 '||' b1',c1' by DIRAF: def 4; hence b,c // b',c' by DIRAF:45; end; hence b,c // b',c' by A15,A17; end; hence thesis by AFF_2:def 4; end; theorem Th15: for V being RealLinearSpace holds for o,u,v,u1,v1 being VECTOR of V, r being Real st o-u=r*(u1-o) & r<>0 & o,v '||' o,v1 & not o,u '||' o,v & u,v '||' u1,v1 holds v1 = u1 + (-r)"*(v-u) & v1 = o + (-r)"*(v-o) & v-u = (-r)*(v1-u1) proof let V be RealLinearSpace; let o,u,v,u1,v1 be VECTOR of V, r be Real such that A1: o-u=r*(u1-o) & r<>0 and A2: o,v '||' o,v1 and A3: not o,u '||' o,v and A4: u,v '||' u1,v1; set w = u1 + (-r)"*(v-u); A5: -r <> 0 by A1,XCMPLX_1:135; A6: 1*(u-o) = (-r)*(u1-o) proof 1*(u-o) = (-1)*(-(u-o)) by RLVECT_1:40 .= (-1)*(r*(u1-o)) by A1,VECTSP_1:81 .= ((-1)*r)*(u1-o) by RLVECT_1:def 9 .= (- 1*r)*(u1-o) by XCMPLX_1:175 .= (-r)*(u1-o); hence thesis; end; A7: o,u '||' o,u1 proof o,u // o,u1 or o,u // u1,o by A6,ANALMETR:18; hence thesis by GEOMTRAP:def 1; end; A8: 1*(v-u) = (-r)*(w-u1) proof (-r)*(w-u1) = (-r)*((-r)"*(v-u)) by RLSUB_2:78 .= ((-r)*(-r)")*(v-u) by RLVECT_1:def 9 .= 1*(v-u) by A5,XCMPLX_0:def 7; hence thesis; end; then A9: v-u = (-r)*(w-u1) by RLVECT_1:def 9; A10: u,v '||' u1,w proof u,v // u1,w or u,v // w,u1 by A8,ANALMETR:18; hence thesis by GEOMTRAP:def 1; end; A11: 1*(o-v) = (-r)*(o-w) proof (-r)*(o-w) = (-r)*o - (-r)*w by RLVECT_1:48 .= (-r)*o - ((-r)*u1 + (-r)*((-r)"*(v-u))) by RLVECT_1:def 9 .= (-r)*o - ((-r)*u1 + ((-r)*(-r)")*(v-u)) by RLVECT_1:def 9 .= (-r)*o - ((-r)*u1 + 1*(v-u)) by A5,XCMPLX_0:def 7 .= (-r)*o - ((-r)*u1 + (v-u)) by RLVECT_1:def 9 .= ((-r)*o - (-r)*u1) - (v-u) by RLVECT_1:41 .= (-r)*(o-u1) - (v-u) by RLVECT_1:48 .= r*(-(o-u1)) - (v-u) by RLVECT_1:38 .= (o-u) - (v-u) by A1,VECTSP_1:81 .= o - ((v-u)+u) by RLVECT_1:41 .= o - v by RLSUB_2:78 .= 1*(o-v) by RLVECT_1:def 9; hence thesis; end; A12: w = o + (-r)"*(v-o) proof A13: (-r)*(w-o) = r*(-(w-o)) by RLVECT_1:38 .= r*(o-w) by VECTSP_1:81 .= -(-(r*(o-w))) by RLVECT_1:30 .= -(r*(-(o-w))) by RLVECT_1:39 .= -(1*(o-v)) by A11,RLVECT_1:38 .= -(o-v) by RLVECT_1:def 9 .= v-o by VECTSP_1:81; thus w = o + (w-o) by RLSUB_2:78 .= o + (-r)"*(v-o) by A5,A13,ANALOAF:13; end; A14: o,v '||' o,w proof v,o // w,o or v,o // o,w by A11,ANALMETR:18; then o,v // w,o or o,v // o,w by ANALOAF:21; hence thesis by GEOMTRAP:def 1; end; for r1,r2 being Real st r1*(u-o)+r2*(v-o) = 0.V holds r1=0 & r2=0 proof let r1,r2 be Real; assume A15: r1*(u-o)+r2*(v-o) = 0.V; assume r1<>0 or r2<>0; then A16: r1<>0 or -r2<>0 by XCMPLX_1:135; r1*(u-o) = -(r2*(v-o)) by A15,RLVECT_1:19 .= r2*(-(v-o)) by RLVECT_1:39 .= (-r2)*(v-o) by RLVECT_1:38; then o,u // o,v or o,u // v,o by A16,ANALMETR:18;hence contradiction by A3, GEOMTRAP:def 1; end; then reconsider X = OASpace(V) as OAffinSpace by ANALOAF:38; reconsider p=o,a=u,a1=u1,b=v,b1=v1,q=w as Element of X by Th4; A17: p,a '||' p,a1 & a,b '||' a1,b1 & a,b '||' a1,q & p,b '||' p,b1 & p,b '||' p,q by A2,A4,A7,A10,A14,Th5; A18: not LIN p,b,a proof assume LIN p,b,a; then p,b '||' p,a by DIRAF:def 5; then p,a '||' p,b by DIRAF:27; hence contradiction by A3,Th5; end; LIN p,b,b1 & LIN p,b,q & LIN p,a,a1 & b,a '||' a1,q & b,a '||' a1,b1 by A17,DIRAF:27,def 5; hence thesis by A9,A12,A18,PASCH:11; end; Lm1: for V being RealLinearSpace holds for u,v,w being VECTOR of V st u<>v & w<>v & u,v // v,w ex r being Real st v-u = r*(w-v) & 0<r proof let V be RealLinearSpace; let u,v,w be VECTOR of V; assume u<>v & w<>v & u,v // v,w; then consider a,b being Real such that A1: a*(v-u)=b*(w-v) and A2: 0<a & 0<b by ANALOAF:16; take r = a"*b; A3: 0<r proof 0<a" by A2,REAL_1:72; then 0*b < r by A2,REAL_1:70; hence thesis; end; v-u = 1*(v-u) by RLVECT_1:def 9 .= (a"*a)*(v-u) by A2,XCMPLX_0:def 7 .= a"*(b*(w-v)) by A1,RLVECT_1:def 9 .= r*(w-v) by RLVECT_1:def 9; hence thesis by A3; end; canceled; theorem Th17: for V being RealLinearSpace, OAS being OAffinSpace st OAS = OASpace(V) holds OAS satisfies_DES_1 proof let V be RealLinearSpace,OAS be OAffinSpace such that A1: OAS = OASpace(V); for o,a,b,c,a1,b1,c1 being Element of OAS st (a,o // o,a1 & b,o // o,b1 & c,o // o,c1 & not LIN o,a,b & not LIN o,a,c & a,b // b1,a1 & a,c // c1,a1) holds b,c // c1,b1 proof let o,a,b,c,a1,b1,c1 be Element of OAS such that A2: a,o // o,a1 & b,o // o,b1 & c,o // o,c1 and A3: not LIN o,a,b & not LIN o,a,c and A4: a,b // b1,a1 & a,c // c1,a1; reconsider y=o,u=a,v=b,w=c,u1=a1,v1=b1,w1=c1 as VECTOR of V by A1,Th4; A5: o<>a & o<>b & o<>c & a<>b & a<>c by A3,DIRAF:37; A6: now assume A7: o=a1; A8: o=b1 proof assume A9: o<>b1; a,b '||' b1,o by A4,A7,DIRAF:def 4; then A10: o,b1 '||' b,a by DIRAF:27; b,o '||' o,b1 by A2,DIRAF:def 4; then o,b1 '||' o,b by DIRAF:27; then LIN o,b1,b by DIRAF:def 5; then LIN o,b1,a & LIN o,b1,b & LIN o,b1,o by A9,A10,DIRAF:37,39; hence contradiction by A3,A9,DIRAF:38; end; o=c1 proof assume A11: o<>c1; a,c '||' c1,o by A4,A7,DIRAF:def 4; then A12: o,c1 '||' c,a by DIRAF:27; c,o '||' o,c1 by A2,DIRAF:def 4; then o,c1 '||' o,c by DIRAF:27; then LIN o,c1,c by DIRAF:def 5; then LIN o,c1,a & LIN o,c1,c & LIN o,c1,o by A11,A12,DIRAF:37,39; hence contradiction by A3,A11,DIRAF:38; end; hence b,c // c1,b1 by A8,DIRAF:7; end; now assume A13: o<>a1; u,y // y,u1 by A1,A2,GEOMTRAP:2; then consider r being Real such that A14: y-u = r*(u1-y) and A15: 0<r by A5,A13,Lm1; o,b // b1,o & o,c // c1,o by A2,DIRAF:5; then y,v // v1,y & y,w // w1,y by A1,GEOMTRAP:2; then A16: y,v '||' y,v1 & y,w '||' y,w1 by GEOMTRAP:def 1; u,v // v1,u1 & u,w // w1,u1 by A1,A4,GEOMTRAP:2; then A17: u,v '||' u1,v1 & u,w '||' u1,w1 by GEOMTRAP:def 1; not y,u '||' y,v & not y,u '||' y,w proof assume not thesis; then y,u // y,v or y,u // v,y or y,u // y,w or y,u // w,y by GEOMTRAP:def 1; then o,a // o,b or o,a // b,o or o,a // o,c or o,a // c,o by A1,GEOMTRAP:2; then o,a '||' o,b or o,a '||' o,c by DIRAF:def 4; hence contradiction by A3,DIRAF:def 5; end; then v1 = u1 + (-r)"*(v-u) & w1 = u1 + (-r)"*(w-u) by A14,A15,A16,A17,Th15; then A18: 1*(w1-v1) = (u1+(-r)"*(w-u)) - (u1+(-r)"*(v-u)) by RLVECT_1:def 9 .= (((-r)"*(w-u)+u1) - u1)-(-r)"*(v-u) by RLVECT_1:41 .= (-r)"*(w-u) - (-r)"*(v-u) by RLSUB_2:78 .= (-r)"*((w-u) - (v-u)) by RLVECT_1:48 .= (-r)"*(w - ((v-u)+u)) by RLVECT_1:41 .= (-r)"*(w - v) by RLSUB_2:78 .= (-(r)")*(w-v) by XCMPLX_1:224 .= r"*(-(w-v)) by RLVECT_1:38 .= r"*(v-w) by VECTSP_1:81; 0<1 & 0<r" by A15,REAL_1:72; then w,v // v1,w1 by A18,ANALOAF:def 1; then c,b // b1,c1 by A1,GEOMTRAP:2; hence b,c // c1,b1 by DIRAF:5; end; hence b,c // c1,b1 by A6; end; hence thesis by Def16; end; theorem Th18: for V being RealLinearSpace, OAS being OAffinSpace st OAS = OASpace(V) holds OAS satisfies_DES_1 & OAS satisfies_DES proof let V be RealLinearSpace,OAS be OAffinSpace; assume OAS=OASpace(V); hence OAS satisfies_DES_1 by Th17; hence OAS satisfies_DES by Th11; end; Lm2: for V being RealLinearSpace holds for y,u,v being VECTOR of V st y,u '||' y,v & y<>u & y<>v ex r being Real st u-y = r*(v-y) & r<>0 proof let V be RealLinearSpace; let y,u,v be VECTOR of V such that A1: y,u '||' y,v and A2: y<>u & y<>v; y,u // y,v or y,u // v,y by A1,GEOMTRAP:def 1; then consider a,b being Real such that A3: a*(u-y) = b*(v-y) and A4: a<>0 or b<>0 by ANALMETR:18; take r=a"*b; A5: now assume a=0; then 0.V = b*(v-y) & b<>0 by A3,A4,RLVECT_1:23 ; then v-y = 0.V by RLVECT_1:24; hence contradiction by A2,RLVECT_1:35; end; A6: now assume b=0; then 0.V = a*(u-y) & a<>0 by A3,A4,RLVECT_1:23; then u-y = 0.V by RLVECT_1:24; hence contradiction by A2,RLVECT_1:35; end; A7: a"<>0 by A5,XCMPLX_1:203; u-y = r*(v-y) proof thus r*(v-y) = a"*(a*(u-y)) by A3,RLVECT_1:def 9 .= (a"*a)*(u-y) by RLVECT_1:def 9 .= 1*(u-y) by A5,XCMPLX_0:def 7 .= u-y by RLVECT_1:def 9; end; hence thesis by A6,A7,XCMPLX_1:6; end; Lm3: for V being RealLinearSpace holds for u,v,y being VECTOR of V holds (u-y)-(v-y) = u-v proof let V be RealLinearSpace; let u,v,y be VECTOR of V; thus (u-y)-(v-y) = u-((v-y)+y) by RLVECT_1:41 .= u-v by RLSUB_2:78; end; theorem Th19: for V being RealLinearSpace, OAS being OAffinSpace st OAS = OASpace(V) holds Lambda(OAS) satisfies_PAP' proof let V be RealLinearSpace, OAS be OAffinSpace such that A1: OAS = OASpace(V); set AS = Lambda(OAS); for M,N being Subset of AS, o,a,b,c,a',b',c' being Element of the carrier of AS st M is_line & N is_line & M<>N & o in M & o in N & o<>a & o<>a' & o<>b & o<>b' & o<>c & o<>c' & a in M & b in M & c in M & a' in N & b' in N & c' in N & a,b' // b,a' & b,c' // c,b' holds a,c' // c,a' proof let M,N be Subset of AS, o,a,b,c,a',b',c' be Element of the carrier of AS such that A2: M is_line & N is_line and A3: M<>N and A4: o in M & o in N and A5: o<>a & o<>a' & o<>b & o<>b' & o<>c & o<>c' and A6: a in M & b in M & c in M & a' in N & b' in N & c' in N and A7: a,b' // b,a' & b,c' // c,b'; reconsider o1=o,a1=a,b1=b,c1=c,a1'=a',b1'=b',c1'=c' as Element of the carrier of OAS by Th2; reconsider q=o1,u=a1,v=b1,w=c1,u'=a1',v'=b1',w'=c1' as VECTOR of V by A1,Th4; a1,b1' '||' b1,a1' & b1,c1' '||' c1,b1' by A7,DIRAF:45; then b1,a1' '||' a1,b1' & b1,c1' '||' c1,b1' by DIRAF:27; then A8: v,u' '||' u,v' & v,w' '||' w,v' by A1,Th5; A9: q,u '||' q,v & q,w '||' q,v proof LIN o,a,b & LIN o,c,b by A2,A4,A6,AFF_1:33; then o,a // o,b & o,c // o,b by AFF_1:def 1; then o1,a1 '||' o1,b1 & o1,c1 '||' o1,b1 by DIRAF:45; hence thesis by A1,Th5; end; then consider r1 being Real such that A10: u-q = r1*(v-q) & r1<>0 by A5,Lm2; consider r2 being Real such that A11: w-q = r2*(v-q) & r2<>0 by A5,A9,Lm2; A12: -r1<>0 by A10,XCMPLX_1:135; (-r1)*(q-v) = r1*(-(q-v)) by RLVECT_1:38 .= u-q by A10,VECTSP_1:81; then A13: q-v = (-r1)"*(u-q) by A12,ANALOAF:13; A14: -r1<>0 & -r2<>0 by A10,A11,XCMPLX_1:135; (-r2)*(q-v) = r2*(-(q-v)) by RLVECT_1:38 .= w-q by A11,VECTSP_1:81; then A15: q-v = (-r2)"*(w-q) by A14,ANALOAF:12; A16: (-r1)" <>0 & (-r2)" <>0 by A14,XCMPLX_1:203; A17: r1"<>0 & r2"<>0 by A10,A11,XCMPLX_1:203; A18: q,u' '||' q,v' & q,w' '||' q,v' proof LIN o,a',b' & LIN o,c',b' by A2,A4,A6,AFF_1:33; then o,a' // o,b' & o,c' // o,b' by AFF_1:def 1; then o1,a1' '||' o1,b1' & o1,c1' '||' o1,b1' by DIRAF:45; hence thesis by A1,Th5; end; A19: not q,v '||' q,w' & not q,v '||' q,u' proof assume not thesis; then o1,b1 '||' o1,c1' or o1,b1 '||' o1,a1' by A1,Th5; then o,b // o,c' or o,b // o,a' by DIRAF:45; then LIN o,b,c' or LIN o,b,a' by AFF_1:def 1; then c' in M or a' in M by A2,A4,A5,A6,AFF_1:39; hence contradiction by A2,A3,A4,A5,A6,AFF_1:30; end; set s=r1*(r2"); v' = q + (-((-r2)"))"*(w'-q) by A8,A15,A16,A18,A19,Th15 .= q + (-(-(r2")))"*(w'-q) by XCMPLX_1:224 .= q+ r2*(w'-q); then A20: v'-q = r2*(w'-q) by RLSUB_2:78; v' = q + (-((-r1)"))"*(u'-q) by A8,A13,A16,A18,A19,Th15 .= q + (-(-(r1")))"*(u'-q) by XCMPLX_1:224 .= q+ r1*(u'-q); then v'-q = r1*(u'-q) by RLSUB_2:78; then A21: u'-q = r1"*(r2*(w'-q)) by A10,A20,ANALOAF:13 .= (r1"*r2)*(w'-q) by RLVECT_1:def 9; r1"*r2<>0 by A11,A17,XCMPLX_1:6; then A22: w'-q = (r1"*r2)"*(u'-q) by A21,ANALOAF:13 .= ((r1")"*(r2"))*(u'-q) by XCMPLX_1:205 .= s*(u'-q); A23: u-q = r1*(r2"*(w-q)) by A10,A11,ANALOAF:13 .= s*(w-q) by RLVECT_1:def 9; 1*(w'-u) = w'-u by RLVECT_1:def 9 .= s*(u'-q) - s*(w-q) by A22,A23,Lm3 .= s*((u'-q)-(w-q)) by RLVECT_1:48 .= s*(u'-w) by Lm3; then u,w' // w,u' or u,w' // u',w by ANALMETR:18 ; then u,w' '||' w,u' by GEOMTRAP:def 1; then a1,c1' '||' c1,a1' by A1,Th5 ; hence a,c' // c,a' by DIRAF:45; end; hence thesis by AFF_2:def 2; end; theorem Th20: for V being RealLinearSpace, OAS being OAffinSpace st OAS = OASpace(V) holds Lambda(OAS) satisfies_DES' proof let V be RealLinearSpace, OAS be OAffinSpace; assume OAS = OASpace(V); then OAS satisfies_DES_1 by Th18; hence Lambda(OAS) satisfies_DES' by Th14; end; theorem Th21: for AS being AffinSpace st AS satisfies_DES' holds AS satisfies_TDES' proof let AS be AffinSpace such that A1: AS satisfies_DES'; now let K be Subset of AS, o,a,b,c,a',b',c' be Element of the carrier of AS such that A2: K is_line & o in K & c in K & c' in K & not a in K & o<>c & a<>b & LIN o,a,a' & LIN o,b,b' & a,b // a',b' & a,c // a',c' & a,b // K; A3: now assume o=b; then b in K & b,a // K by A2,AFF_1:48; hence contradiction by A2,AFF_1:37; end; set A=Line(o,a), P=Line(o,b); A4: A is_line & P is_line & o in A & a in A & o in P & b in P by A2,A3,AFF_1:38; then A5: a' in A & b' in P by A2,A3,AFF_1:39; A<>P proof assume A=P; then b in A & A // A by A4,AFF_1:55; then a,b // A by A4,AFF_1:54; then A // K by A2,AFF_1:67; hence contradiction by A2,A4,AFF_1:59;end; hence b,c // b',c' by A1,A2,A3,A4,A5,AFF_2:def 4 ; end; hence thesis by AFF_2:def 7; end; theorem Th22: for V being RealLinearSpace, OAS being OAffinSpace st OAS = OASpace(V) holds Lambda(OAS) satisfies_TDES' proof let V be RealLinearSpace, OAS be OAffinSpace; assume OAS = OASpace(V); then (Lambda(OAS)) satisfies_DES' by Th20; hence thesis by Th21; end; theorem Th23: for V being RealLinearSpace, OAS being OAffinSpace st OAS = OASpace(V) holds Lambda(OAS) satisfies_des' proof let V be RealLinearSpace, OAS be OAffinSpace such that A1: OAS = OASpace(V); set AS = Lambda(OAS); for A,P,C being Subset of AS, a,b,c,a',b',c' being Element of the carrier of AS st A // P & A // C & a in A & a' in A & b in P & b' in P & c in C & c' in C & A is_line & P is_line & C is_line & A<>P & A<>C & a,b // a',b' & a,c // a',c' holds b,c // b',c' proof let A,P,C be Subset of AS, a,b,c,a',b',c' be Element of the carrier of AS such that A2: A // P & A // C and A3: a in A & a' in A & b in P & b' in P & c in C & c' in C and A4: A is_line & P is_line & C is_line and A5: A<>P & A<>C and A6: a,b // a',b' & a,c // a',c'; reconsider a1=a,b1=b,c1=c,a1'=a',b1'=b',c1'=c' as Element of the carrier of OAS by Th2; reconsider u=a1,v=b1,w=c1,u'=a1' as VECTOR of V by A1,Th4; A7: now assume A8: a=a'; A9: b=b' proof assume A10: b<>b'; LIN a,b,b' by A6,A8,AFF_1:def 1 ; then LIN b,b',a by AFF_1:15; then a in P by A3,A4,A10,AFF_1:39; hence contradiction by A2,A3,A5,AFF_1:59; end; c =c' proof assume A11: c <>c'; LIN a,c,c' by A6,A8,AFF_1:def 1 ; then LIN c,c',a by AFF_1:15; then a in C by A3,A4,A11,AFF_1:39; hence contradiction by A2,A3,A5,AFF_1:59; end; hence b,c // b',c' by A9,AFF_1:11; end; now assume A12: a<>a'; A13: not LIN a1,a1',b1 proof assume LIN a1,a1',b1; then LIN a,a',b by Th3; then b in A by A3,A4,A12,AFF_1:39; hence contradiction by A2,A3,A5,AFF_1:59; end; A14: not LIN a1,a1',c1 proof assume LIN a1,a1',c1; then LIN a,a',c by Th3; then c in A by A3,A4,A12,AFF_1:39; hence contradiction by A2,A3,A5,AFF_1:59 ; end; A15: a1,b1 '||' a1',b1' & a1,c1 '||' a1',c1' by A6,DIRAF:45; A16: a1,a1' '||' b1,b1' & a1,a1' '||' c1,c1' proof a,a' // b,b' & a,a' // c,c' by A2,A3,AFF_1:53; hence thesis by DIRAF:45; end; set v''= (u'+v)-u,w''=(u'+w)-u; reconsider b1''=v'',c1''=w'' as Element of the carrier of OAS by A1,Th4; u,u' // v,v'' & u,v // u',v'' & u,u' // w,w'' & u,w // u',w'' by ANALOAF:25 ; then u,u' '||' v,v'' & u,v '||' u',v'' & u,u' '||' w,w'' & u,w '||' u',w'' by GEOMTRAP:def 1; then a1,a1' '||' b1,b1'' & a1,a1' '||' c1,c1'' & a1,b1 '||' a1',b1'' & a1,c1 '||' a1',c1'' by A1,Th5; then A17: b1''=b1' & c1''=c1' by A13,A14,A15,A16,PASCH:12; w''-v'' = (u'+w) - (((u'+v)-u) + u) by RLVECT_1:41 .= (u'+w) - (u'+v) by RLSUB_2:78 .= ((w+u')-u') - v by RLVECT_1:41 .= w - v by RLSUB_2:78 ; then v,w // v'',w'' by ANALOAF:24; then v,w '||' v'',w'' by GEOMTRAP:def 1; then b1,c1 '||' b1',c1' by A1,A17,Th5; hence b,c // b',c' by DIRAF:45; end; hence b,c // b',c' by A7; end; hence thesis by AFF_2:def 11; end; theorem Th24: for OAS being OAffinSpace holds Lambda(OAS) satisfies_Fano proof let OAS be OAffinSpace; set AS = Lambda(OAS); for a,b,c,d being Element of AS st a,b // c,d & a,c // b,d & a,d // b,c holds a,b // a,c proof let a,b,c,d be Element of AS such that A1: a,b // c,d & a,c // b,d and A2: a,d // b,c; assume A3: not a,b // a,c; then A4: not LIN a,b,c by AFF_1:def 1; reconsider a1=a,b1=b,c1=c,d1=d as Element of OAS by Th2; A5: a1,b1 '||' c1,d1 & a1,c1 '||' b1,d1 by A1,DIRAF:45; not LIN a1,b1,c1 proof assume not thesis; then a1,b1 '||' a1,c1 by DIRAF:def 5 ; hence contradiction by A3,DIRAF:45; end; then consider x1 being Element of OAS such that A6: LIN x1,a1,d1 & LIN x1,b1,c1 by A5,PASCH:33; reconsider x=x1 as Element of AS by Th2; A7: LIN a,d,x & LIN b,c,x proof x1,a1 '||' x1,d1 & x1,b1 '||' x1,c1 by A6,DIRAF:def 5; then x,a // x,d & x,b // x,c by DIRAF:45; then LIN x,a,d & LIN x,b,c by AFF_1:def 1; hence thesis by AFF_1:15; end; set P = Line(a,d),Q = Line(b,c); A8: b<>c by A4,AFF_1:16; A9: a<>d by A1,A3,AFF_1:13; then A10: P is_line & Q is_line by A8,AFF_1:def 3; A11: a in P & d in P & x in P by A7,AFF_1:26,def 2; A12: b in Q & c in Q & x in Q by A7,AFF_1:26,def 2; then P // Q by A2,A8,A9,A10,A11,AFF_1:52; then P = Q by A11,A12,AFF_1:59; hence contradiction by A4,A10,A11,A12,AFF_1:33; end; hence thesis by Def5; end; definition cluster Pappian Desarguesian Moufangian translation OAffinSpace; existence proof consider V being RealLinearSpace such that A1: ex u,v being VECTOR of V st for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0 by FUNCSDOM:37; reconsider X = OASpace(V) as OAffinSpace by A1,ANALOAF:38; take X; set AS = Lambda(X); A2: AS satisfies_PAP' by Th19; A3:AS satisfies_DES' by Th20; A4:AS satisfies_TDES' by Th22; AS satisfies_des' by Th23; hence thesis by A2,A3,A4,Def11,Def12,Def13,Def14; end; end; definition cluster strict Fanoian Pappian Desarguesian Moufangian translational AffinPlane; existence proof consider V being RealLinearSpace such that A1: ex u,v being VECTOR of V st (for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0) & (for w being VECTOR of V ex a,b being Real st w = a*u + b*v) by FUNCSDOM:37; reconsider OAS = OASpace(V) as OAffinPlane by A1,ANALOAF:51; take X = Lambda(OAS); A2: X satisfies_PAP' by Th19; then X satisfies_DES by AFF_2:25; then X satisfies_TDES' by AFF_2:26; hence thesis by A2,Th24,AFF_2:25,28; end; end; definition cluster strict Fanoian Pappian Desarguesian Moufangian translational AffinSpace; existence proof consider V being RealLinearSpace such that A1: ex u,v being VECTOR of V st for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0 by FUNCSDOM:37; reconsider X = OASpace(V) as OAffinSpace by A1,ANALOAF:38; take Lambda(X); thus thesis by Th19,Th20,Th22,Th23,Th24; end; end; definition let OAS be OAffinSpace; cluster Lambda(OAS) -> Fanoian; correctness by Th24; end; definition let OAS be Pappian OAffinSpace; cluster Lambda(OAS) -> Pappian; correctness by Def11; end; definition let OAS be Desarguesian OAffinSpace; cluster Lambda(OAS) -> Desarguesian; correctness by Def12; end; definition let OAS be Moufangian OAffinSpace; cluster Lambda(OAS) -> Moufangian; correctness by Def13; end; definition let OAS be translation OAffinSpace; cluster Lambda(OAS) -> translational; correctness by Def14; end;