environ vocabulary COLLSP, PRE_TOPC, INCSP_1, RELAT_1, ANPROJ_2, ANALOAF, VECTSP_1, AFF_2, INCPROJ; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELSET_1, STRUCT_0, PRE_TOPC, INCSP_1, COLLSP, ANPROJ_2; constructors INCSP_1, ANPROJ_2, DOMAIN_1, XBOOLE_0; clusters ANPROJ_2, RELSET_1, STRUCT_0, SUBSET_1, ZFMISC_1, XBOOLE_0; requirements SUBSET, BOOLE; begin reserve CPS for proper CollSp, B for Element of bool the carrier of CPS, p for Point of CPS, x, y, z, Y for set; definition let CPS; redefine mode LINE of CPS -> Element of bool the carrier of CPS; end; definition let CPS; func ProjectiveLines(CPS) -> set equals :: INCPROJ:def 1 {B : B is LINE of CPS}; end; definition let CPS; cluster ProjectiveLines(CPS) -> non empty; end; canceled; theorem :: INCPROJ:2 x is LINE of CPS iff x is Element of ProjectiveLines(CPS); definition let CPS; func Proj_Inc(CPS) -> Relation of the carrier of CPS, ProjectiveLines(CPS) means :: INCPROJ:def 2 for x,y holds [x,y] in it iff x in the carrier of CPS & y in ProjectiveLines(CPS) & ex Y st y=Y & x in Y; end; definition let CPS; func IncProjSp_of(CPS) -> IncProjStr equals :: INCPROJ:def 3 IncProjStr (# the carrier of CPS, ProjectiveLines(CPS), Proj_Inc(CPS) #); end; definition let CPS; cluster IncProjSp_of(CPS) -> strict; end; canceled; theorem :: INCPROJ:4 the Points of IncProjSp_of(CPS) = the carrier of CPS & the Lines of IncProjSp_of(CPS) = ProjectiveLines(CPS) & the Inc of IncProjSp_of(CPS) = Proj_Inc(CPS); theorem :: INCPROJ:5 x is Point of CPS iff x is POINT of IncProjSp_of(CPS); theorem :: INCPROJ:6 x is LINE of CPS iff x is LINE of IncProjSp_of(CPS); reserve a,b,c,p,q,s for POINT of IncProjSp_of(CPS), P,Q,S for LINE of IncProjSp_of(CPS), a',b',c',p',q',r' for Point of CPS, P' for LINE of CPS; canceled; theorem :: INCPROJ:8 s on S iff [s,S] in Proj_Inc(CPS); theorem :: INCPROJ:9 p = p' & P = P' implies (p on P iff p' in P'); theorem :: INCPROJ:10 ex a', b', c' st a'<>b' & b'<>c' & c'<>a'; theorem :: INCPROJ:11 ex b' st a'<>b'; theorem :: INCPROJ:12 p on P & q on P & p on Q & q on Q implies p = q or P = Q; theorem :: INCPROJ:13 ex P st p on P & q on P; theorem :: INCPROJ:14 a = a' & b = b' & c = c' implies (a',b',c' is_collinear iff ex P st a on P & b on P & c on P); theorem :: INCPROJ:15 ex p, P st not p on P; reserve CPS for CollProjectiveSpace; reserve a,b,c,d,p,q for POINT of IncProjSp_of(CPS), P,Q,S,M,N for LINE of IncProjSp_of(CPS), a',b',c',d',p',q' for Point of CPS; theorem :: INCPROJ:16 ex a, b, c st a<>b & b<>c & c <>a & a on P & b on P & c on P; theorem :: INCPROJ:17 a on M & b on M & c on N & d on N & p on M & p on N & a on P & c on P & b on Q & d on Q & not p on P & not p on Q & M<>N implies ex q st q on P & q on Q; theorem :: INCPROJ:18 (for a',b',c',d' ex p' st a', b', p' is_collinear & c', d', p' is_collinear) implies for M, N ex q st q on M & q on N; theorem :: INCPROJ:19 (ex p, p1, r, r1 being Point of CPS st not ex s being Point of CPS st (p, p1, s is_collinear & r, r1, s is_collinear)) implies (ex M, N st not ex q st q on M & q on N); theorem :: INCPROJ:20 (for p, p1, q, q1, r2 being Point of CPS ex r, r1 being Point of CPS st p,q,r is_collinear & p1,q1,r1 is_collinear & r2,r,r1 is_collinear) implies (for a, M, N ex b, c, S st a on S & b on S & c on S & b on M & c on N); definition let x, y, z be set; canceled; pred x,y,z are_mutually_different means :: INCPROJ:def 5 x <> y & y <> z & z <> x; let u be set; pred x, y, z, u are_mutually_different means :: INCPROJ:def 6 x <> y & y <> z & z <> x & u <> x & u <> y & u <> z; end; definition let CS be IncProjStr, a,b be POINT of CS, M be LINE of CS; pred a,b on M means :: INCPROJ:def 7 a on M & b on M; let c be POINT of CS; pred a,b,c on M means :: INCPROJ:def 8 a on M & b on M & c on M; end; theorem :: INCPROJ:21 (for p1, r2, q, r1, q1, p, r being Point of CPS holds (p1,r2,q is_collinear & r1,q1,q is_collinear & p1,r1,p is_collinear & r2,q1,p is_collinear & p1,q1,r is_collinear & r2,r1,r is_collinear & p,q,r is_collinear implies (p1,r2,q1 is_collinear or p1,r2,r1 is_collinear or p1,r1,q1 is_collinear or r2,r1,q1 is_collinear))) implies (for p, q, r, s, a, b, c being POINT of IncProjSp_of(CPS) for L, Q, R, S, A, B, C being LINE of IncProjSp_of(CPS) st not q on L & not r on L & not p on Q & not s on Q & not p on R & not r on R & not q on S & not s on S & a,p,s on L & a,q,r on Q & b,q,s on R & b,p,r on S & c,p,q on A & c,r,s on B & a,b on C holds not c on C); theorem :: INCPROJ:22 (for o,p1,p2,p3,q1,q2,q3,r1,r2,r3 being Point of CPS st o<>q1 & p1<>q1 & o<>q2 & p2<>q2 & o<>q3 & p3<>q3 & not o,p1,p2 is_collinear & not o,p1,p3 is_collinear & not o,p2,p3 is_collinear & p1,p2,r3 is_collinear & q1,q2,r3 is_collinear & p2,p3,r1 is_collinear & q2,q3,r1 is_collinear & p1,p3,r2 is_collinear & q1,q3,r2 is_collinear & o,p1,q1 is_collinear & o,p2,q2 is_collinear & o,p3,q3 is_collinear holds r1,r2,r3 is_collinear) implies (for o,b1,a1,b2,a2,b3,a3,r,s,t being POINT of IncProjSp_of(CPS) for C1,C2,C3,A1,A2,A3,B1,B2,B3 being LINE of IncProjSp_of(CPS) st o,b1,a1 on C1 & o,a2,b2 on C2 & o,a3,b3 on C3 & a3,a2,t on A1 & a3,r,a1 on A2 & a2,s,a1 on A3 & t,b2,b3 on B1 & b1,r,b3 on B2 & b1,s,b2 on B3 & C1,C2,C3 are_mutually_different & o<>a1 & o<>a2 & o<>a3 & o<>b1 & o<>b2 & o<>b3 & a1<>b1 & a2<>b2 & a3<>b3 holds ex O being LINE of IncProjSp_of(CPS) st r,s,t on O); theorem :: INCPROJ:23 (for o,p1,p2,p3,q1,q2,q3,r1,r2,r3 being Point of CPS st o<>p2 & o<>p3 & p2<>p3 & p1<>p2 & p1<>p3 & o<>q2 & o<>q3 & q2<>q3 & q1<>q2 & q1<>q3 & not o,p1,q1 is_collinear & o,p1,p2 is_collinear & o,p1,p3 is_collinear & o,q1,q2 is_collinear & o,q1,q3 is_collinear & p1,q2,r3 is_collinear & q1,p2,r3 is_collinear & p1,q3,r2 is_collinear & p3,q1,r2 is_collinear & p2,q3,r1 is_collinear & p3,q2,r1 is_collinear holds r1,r2,r3 is_collinear) implies (for o,a1,a2,a3,b1,b2,b3,c1,c2,c3 being POINT of IncProjSp_of(CPS) for A1,A2,A3,B1,B2,B3,C1,C2,C3 being LINE of IncProjSp_of(CPS) st o,a1,a2,a3 are_mutually_different & o,b1,b2,b3 are_mutually_different & A3<>B3 & o on A3 & o on B3 & a2,b3,c1 on A1 & a3,b1,c2 on B1 & a1,b2,c3 on C1 & a1,b3,c2 on A2 & a3,b2,c1 on B2 & a2,b1,c3 on C2 & b1,b2,b3 on A3 & a1,a2,a3 on B3 & c1,c2 on C3 holds c3 on C3); definition let IT be IncProjStr; attr IT is partial means :: INCPROJ:def 9 for p, q being POINT of IT, P, Q being LINE of IT st p on P & q on P & p on Q & q on Q holds p = q or P = Q; attr IT is linear means :: INCPROJ:def 10 for p,q being POINT of IT ex P being LINE of IT st p on P & q on P; attr IT is up-2-dimensional means :: INCPROJ:def 11 ex p being POINT of IT, P being LINE of IT st not p on P; attr IT is up-3-rank means :: INCPROJ:def 12 for P being LINE of IT ex a, b, c being POINT of IT st a <> b & b <> c & c <> a & a on P & b on P & c on P; attr IT is Vebleian means :: INCPROJ:def 13 for a, b, c, d, p, q being POINT of IT for M, N, P, Q being LINE of IT st a on M & b on M & c on N & d on N & p on M & p on N & a on P & c on P & b on Q & d on Q & not p on P & not p on Q & M<>N holds ex q being POINT of IT st q on P & q on Q; end; definition let CPS be CollProjectiveSpace; cluster IncProjSp_of(CPS) -> partial linear up-2-dimensional up-3-rank Vebleian; end; definition cluster strict partial linear up-2-dimensional up-3-rank Vebleian IncProjStr; end; definition mode IncProjSp is partial linear up-2-dimensional up-3-rank Vebleian IncProjStr; end; definition let CPS be CollProjectiveSpace; cluster IncProjSp_of(CPS) -> partial linear up-2-dimensional up-3-rank Vebleian; end; definition let IT be IncProjSp; attr IT is 2-dimensional means :: INCPROJ:def 14 for M,N being LINE of IT ex q being POINT of IT st q on M & q on N; antonym IT is up-3-dimensional; end; definition let IT be IncProjSp; canceled; attr IT is at_most-3-dimensional means :: INCPROJ:def 16 for a being POINT of IT, M, N being LINE of IT ex b,c being POINT of IT, S being LINE of IT st a on S & b on S & c on S & b on M & c on N; end; definition let IT be IncProjSp; attr IT is 3-dimensional means :: INCPROJ:def 17 IT is at_most-3-dimensional up-3-dimensional; end; definition let IT be IncProjSp; attr IT is Fanoian means :: INCPROJ:def 18 for p,q,r,s,a,b,c being POINT of IT for L,Q,R,S,A,B,C being LINE of IT st not q on L & not r on L & not p on Q & not s on Q & not p on R & not r on R & not q on S & not s on S & a,p,s on L & a,q,r on Q & b,q,s on R & b,p,r on S & c,p,q on A & c,r,s on B & a,b on C holds not c on C; end; definition let IT be IncProjSp; attr IT is Desarguesian means :: INCPROJ:def 19 for o,b1,a1,b2,a2,b3,a3,r,s,t being POINT of IT for C1,C2,C3,A1,A2,A3,B1,B2,B3 being LINE of IT st o,b1,a1 on C1 & o,a2,b2 on C2 & o,a3,b3 on C3 & a3,a2,t on A1 & a3,r,a1 on A2 & a2,s,a1 on A3 & t,b2,b3 on B1 & b1,r,b3 on B2 & b1,s,b2 on B3 & C1,C2,C3 are_mutually_different & o<>a1 & o<>a2 & o<>a3 & o<>b1 & o<>b2 & o<>b3 & a1<>b1 & a2<>b2 & a3<>b3 holds ex O being LINE of IT st r,s,t on O; end; definition let IT be IncProjSp; attr IT is Pappian means :: INCPROJ:def 20 for o,a1,a2,a3,b1,b2,b3,c1,c2,c3 being POINT of IT for A1,A2,A3,B1,B2,B3,C1,C2,C3 being LINE of IT st o,a1,a2,a3 are_mutually_different & o,b1,b2,b3 are_mutually_different & A3<>B3 & o on A3 & o on B3 & a2,b3,c1 on A1 & a3,b1,c2 on B1 & a1,b2,c3 on C1 & a1,b3,c2 on A2 & a3,b2,c1 on B2 & a2,b1,c3 on C2 & b1,b2,b3 on A3 & a1,a2,a3 on B3 & c1,c2 on C3 holds c3 on C3; end; definition cluster Desarguesian Fanoian at_most-3-dimensional up-3-dimensional IncProjSp; end; definition cluster Pappian Fanoian at_most-3-dimensional up-3-dimensional IncProjSp; end; definition cluster Desarguesian Fanoian 2-dimensional IncProjSp; end; definition cluster Pappian Fanoian 2-dimensional IncProjSp; end;