Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Wojciech Leonczuk,
- Henryk Oryszczyszyn,
and
- Krzysztof Prazmowski
- Received December 5, 1990
- MML identifier: AFF_4
- [
Mizar article,
MML identifier index
]
environ
vocabulary DIRAF, BOOLE, ANALOAF, AFF_1, INCSP_1, PARSP_1, AFF_2, AFF_4;
notation TARSKI, XBOOLE_0, SUBSET_1, STRUCT_0, ANALOAF, DIRAF, AFF_1,
PAPDESAF;
constructors AFF_1, AFF_2, MEMBERED, XBOOLE_0;
clusters STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin
reserve AS for AffinSpace;
reserve a,b,c,d,a',b',c',d',p,q,r,x,y for Element of AS;
reserve A,C,K,M,N,P,Q,X,Y,Z for Subset of AS;
theorem :: AFF_4:1
(LIN p,a,a' or LIN p,a',a) & p<>a implies ex b' st
LIN p,b,b' & a,b // a',b';
theorem :: AFF_4:2
(a,b // A or b,a // A) & a in A implies b in A;
theorem :: AFF_4:3
(a,b // A or b,a // A) & (A // K or K // A) implies
(a,b // K & b,a // K);
theorem :: AFF_4:4
(a,b // A or b,a // A) & (a,b // c,d or c,d // a,b) & a<>b implies
c,d // A & d,c // A;
theorem :: AFF_4:5
(a,b // M or b,a // M) & (a,b // N or b,a // N) & a<>b implies
M // N & N // M;
theorem :: AFF_4:6
(a,b // M or b,a // M) & (c,d // M or d,c // M) implies
a,b // c,d & a,b // d,c;
theorem :: AFF_4:7
(A // C or C // A) & a<>b & (a,b // c,d or c,d // a,b) &
a in A & b in A & c in C implies d in C;
theorem :: AFF_4:8
q in M & q in N & a in M & a' in M & b in N & b' in
N & q<>a & q<>b &
M<>N & (a,b // a',b' or b,a // b',a') & M is_line & N is_line & q=a'
implies q=b';
theorem :: AFF_4:9
q in M & q in N & a in M & a' in M & b in N & b' in
N & q<>a & q<>b &
M<>N & (a,b // a',b' or b,a // b',a') & M is_line & N is_line & a=a'
implies b=b';
theorem :: AFF_4:10
(M // N or N // M) & a in M & a' in M & b in N & b' in N & M<>N &
(a,b // a',b' or b,a // b',a') & a=a' implies b=b';
theorem :: AFF_4:11
ex A st a in A & b in A & A is_line;
theorem :: AFF_4:12
A is_line implies ex q st not q in A;
definition let AS,K,P; func Plane(K,P) -> Subset of AS equals
:: AFF_4:def 1
{a: ex b st a,b // K & b in P}; end;
definition let AS,X; attr X is being_plane means
:: AFF_4:def 2
ex K,P st K is_line & P is_line & not K // P & X = Plane(K,P);
synonym X is_plane;
end;
theorem :: AFF_4:13
not K is_line implies Plane(K,P) = {};
theorem :: AFF_4:14
K is_line implies P c= Plane(K,P);
theorem :: AFF_4:15
K // P implies Plane(K,P) = P;
theorem :: AFF_4:16
K // M implies Plane(K,P) = Plane(M,P);
theorem :: AFF_4:17
p in M & a in M & b in M & p in N & a' in N & b' in N & not p in P &
not p in Q & M<>N & a in P & a' in P & b in Q & b' in Q & M is_line & N is_line
& P is_line & Q is_line implies (P // Q or ex q st q in P & q in Q);
theorem :: AFF_4:18
a in M & b in M & a' in N & b' in N &
a in P & a' in P & b in Q & b' in Q & M<>N & M // N &
P is_line & Q is_line implies (P // Q or ex q st q in P & q in Q);
theorem :: AFF_4:19
X is_plane & a in X & b in X & a<>b implies Line(a,b) c= X;
theorem :: AFF_4:20
K is_line & P is_line & Q is_line & not K // P & not K // Q
& Q c= Plane(K,P) implies Plane(K,Q) = Plane(K,P);
theorem :: AFF_4:21
K is_line & P is_line & Q is_line & Q c= Plane(K,P)
implies P // Q or ex q st q in P & q in Q;
theorem :: AFF_4:22
X is_plane & M is_line & N is_line & M c= X & N c= X implies
M // N or ex q st q in M & q in N;
theorem :: AFF_4:23
X is_plane & a in X & M c= X & a in N & (M // N or N // M)
implies N c= X;
theorem :: AFF_4:24
X is_plane & Y is_plane & a in X & b in X & a in Y & b in Y &
X<>Y & a<>b implies X /\ Y is_line;
theorem :: AFF_4:25
X is_plane & Y is_plane & a in X & b in X & c in X & a in Y & b in Y &
c in Y & not LIN a,b,c implies X = Y;
theorem :: AFF_4:26
X is_plane & Y is_plane & M is_line & N is_line & M c= X &
N c= X & M c= Y & N c= Y & M<>N implies X = Y;
definition let AS,a,K such that K is_line;
func a*K -> Subset of AS means
:: AFF_4:def 3
a in it & K // it;
end;
theorem :: AFF_4:27
A is_line implies a*A is_line;
theorem :: AFF_4:28
X is_plane & M is_line & a in X & M c= X implies a*M c= X;
theorem :: AFF_4:29
X is_plane & a in X & b in X & c in X & a,b // c,d & a<>b implies d in X;
theorem :: AFF_4:30
A is_line implies ( a in A iff a*A = A );
theorem :: AFF_4:31
A is_line implies a*A = a*(q*A);
theorem :: AFF_4:32
K // M implies a*K=a*M;
definition let AS,X,Y;
pred X '||' Y means
:: AFF_4:def 4
for a,A st a in Y & A is_line & A c= X holds a*A c= Y;
end;
theorem :: AFF_4:33
X c= Y & ((X is_line & Y is_line) or (X is_plane & Y is_plane))
implies X=Y;
theorem :: AFF_4:34
X is_plane implies ex a,b,c st a in X & b in X & c in X & not LIN a,b,c;
theorem :: AFF_4:35
M is_line & X is_plane implies ex q st q in X & not q in M;
theorem :: AFF_4:36
for a,A st A is_line ex X st a in X & A c= X & X is_plane;
theorem :: AFF_4:37
ex X st a in X & b in X & c in X & X is_plane;
theorem :: AFF_4:38
q in M & q in N & M is_line & N is_line implies ex X st M c= X &
N c= X & X is_plane;
theorem :: AFF_4:39
M // N implies ex X st M c= X & N c= X & X is_plane;
theorem :: AFF_4:40
M is_line & N is_line implies (M // N iff M '||' N);
theorem :: AFF_4:41
M is_line & X is_plane implies (M '||' X iff (ex N st N c= X &
(M // N or N // M)));
theorem :: AFF_4:42
M is_line & X is_plane & M c= X implies M '||' X;
theorem :: AFF_4:43
A is_line & X is_plane & a in A & a in X & A '||' X implies A c= X;
definition let AS,K,M,N;
pred K,M,N is_coplanar means
:: AFF_4:def 5
ex X st K c= X & M c= X & N c= X & X is_plane;
end;
theorem :: AFF_4:44
K,M,N is_coplanar implies K,N,M is_coplanar & M,K,N is_coplanar &
M,N,K is_coplanar & N,K,M is_coplanar & N,M,K is_coplanar;
theorem :: AFF_4:45
A is_line & K is_line & M is_line & N is_line & M,N,K is_coplanar
& M,N,A is_coplanar & M<>N implies M,K,A is_coplanar;
theorem :: AFF_4:46
K is_line & M is_line & X is_plane & K c= X & M c= X &
K<>M implies (K,M,A is_coplanar iff A c= X);
theorem :: AFF_4:47
q in K & q in M & K is_line & M is_line implies
K,M,M is_coplanar & M,K,M is_coplanar & M,M,K is_coplanar;
theorem :: AFF_4:48
AS is not AffinPlane & X is_plane implies ex q st not q in X;
theorem :: AFF_4:49
AS is not AffinPlane & q in A & q in P & q in C &
q<>a & q<>b & q<>c & a in A & a' in A & b in P & b' in P &
c in C & c' in C & A is_line & P is_line & C is_line &
A<>P & A<>C & a,b // a',b' & a,c // a',c' implies b,c // b',c';
theorem :: AFF_4:50
AS is not AffinPlane implies AS is Desarguesian;
theorem :: AFF_4:51
AS is not AffinPlane & A // P & A // C &
a in A & a' in A & b in P & b' in P &
c in C & c' in C & A is_line & P is_line & C is_line &
A<>P & A<>C & a,b // a',b' & a,c // a',c' implies b,c // b',c';
theorem :: AFF_4:52
AS is not AffinPlane implies AS is translational;
theorem :: AFF_4:53
AS is AffinPlane & not LIN a,b,c implies
ex c' st a,c // a',c' & b,c // b',c';
theorem :: AFF_4:54
not LIN a,b,c & a'<>b' & a,b // a',b' implies ex c' st
a,c // a',c' &
b,c // b',c';
theorem :: AFF_4:55
X is_plane & Y is_plane implies (X '||' Y iff (ex A,P,M,N st
not A // P & A c= X & P c= X & M c= Y & N c= Y & (A // M or M // A) &
(P // N or N // P)));
theorem :: AFF_4:56
A // M & M '||' X implies A '||' X;
theorem :: AFF_4:57
X is_plane implies X '||' X;
theorem :: AFF_4:58
X is_plane & Y is_plane & X '||' Y implies Y '||' X;
theorem :: AFF_4:59
X is_plane implies X <> {};
theorem :: AFF_4:60
X '||' Y & Y '||' Z & Y <> {} implies X '||' Z;
theorem :: AFF_4:61
X is_plane & Y is_plane & Z is_plane & ((X '||' Y & Y '||' Z) or
( X '||' Y & Z '||' Y) or (Y '||' X & Y '||' Z) or (Y '||' X & Z '||' Y))
implies (X '||' Z & Z '||' X);
theorem :: AFF_4:62
X is_plane & Y is_plane & a in X & a in Y & X '||' Y implies X=Y;
theorem :: AFF_4:63
X is_plane & Y is_plane & Z is_plane & X '||' Y & X<>Y &
a in X /\ Z & b in X /\ Z & c in Y /\ Z & d in Y /\ Z implies a,b // c,d;
theorem :: AFF_4:64
X is_plane & Y is_plane & Z is_plane & X '||' Y & a in X /\ Z
& b in X /\ Z & c in Y /\ Z & d in
Y /\ Z & X<>Y & a<>b & c <>d implies X/\Z // Y/\Z;
theorem :: AFF_4:65
for a,X st X is_plane ex Y st a in Y & X '||' Y & Y is_plane;
definition let AS,a,X such that X is_plane;
func a+X -> Subset of AS means
:: AFF_4:def 6
a in it & X '||' it & it is_plane;
end;
theorem :: AFF_4:66
X is_plane implies ( a in X iff a+X = X );
theorem :: AFF_4:67
X is_plane implies a+X = a+(q+X);
theorem :: AFF_4:68
A is_line & X is_plane & A '||' X implies a*A c= a+X;
theorem :: AFF_4:69
X is_plane & Y is_plane & X '||' Y implies a+X = a+Y;
Back to top