Copyright (c) 2000 Association of Mizar Users
environ
vocabulary RELAT_1, FUNCT_3, FUNCT_1, SQUARE_1, FUZZY_1, BOOLE, FUZZY_3,
FUNCT_2;
notation XBOOLE_0, ZFMISC_1, SUBSET_1, XREAL_0, RELSET_1, FUNCT_2, RFUNCT_1,
FUZZY_1;
constructors SEQ_1, RFUNCT_1, FUZZY_2, RCOMP_1, XCMPLX_0, MEMBERED;
clusters SUBSET_1, MEMBERED;
theorems FUZZY_1, FUNCT_2, FUZZY_2;
begin
reserve C1,C2 for non empty set;
definition let C be non empty set;
cluster -> quasi_total Membership_Func of C;
coherence
proof let f be Membership_Func of C;
dom f = C by FUZZY_1:def 1;
hence thesis by FUNCT_2:def 1;
end;
end;
definition let C1,C2 be non empty set;
mode RMembership_Func of C1,C2 is Membership_Func of [:C1,C2:];
end;
definition let C1,C2 be non empty set;
let h be RMembership_Func of C1,C2;
mode FuzzyRelation of C1,C2,h is FuzzySet of [:C1,C2:],h;
end;
reserve f,g for RMembership_Func of C1,C2;
begin :: Empty Fuzzy Set and Universal Fuzzy Set
definition let C1,C2 be non empty set;
mode Zero_Relation of C1,C2 is Empty_FuzzySet of [:C1,C2:];
mode Universe_Relation of C1,C2 is Universal_FuzzySet of [:C1,C2:];
end;
reserve X for Universe_Relation of C1,C2;
reserve O for Zero_Relation of C1,C2;
definition
let C1,C2 be non empty set;
func Zmf(C1,C2) -> RMembership_Func of C1,C2 equals :Def1:
chi({},[:C1,C2:]);
correctness by FUZZY_1:23;
func Umf(C1,C2) -> RMembership_Func of C1,C2 equals :Def2:
chi([:C1,C2:],[:C1,C2:]);
correctness by FUZZY_1:2;
end;
canceled 44;
theorem Th45: Zmf(C1,C2) = EMF [:C1,C2:]
proof
thus Zmf(C1,C2) = chi({},[:C1,C2:]) by Def1
.= EMF [:C1,C2:] by FUZZY_1:def 13;
end;
theorem Th46: Umf(C1,C2) = UMF [:C1,C2:]
proof
thus Umf(C1,C2) = chi([:C1,C2:],[:C1,C2:]) by Def2
.= UMF [:C1,C2:] by FUZZY_1:def 14;
end;
theorem
O is FuzzyRelation of C1,C2,Zmf(C1,C2) by Th45;
theorem
X is FuzzyRelation of C1,C2,Umf(C1,C2) by Th46;
canceled 3;
theorem
for x be Element of [:C1,C2:],h be RMembership_Func of C1,C2 holds
(Zmf(C1,C2)).x <= h.x & h.x <= (Umf(C1,C2)).x
proof
Zmf(C1,C2) = EMF [:C1,C2:] & Umf(C1,C2) = UMF [:C1,C2:] by Th45,Th46;
hence thesis by FUZZY_1:31;
end;
theorem
max(f,Umf(C1,C2)) = Umf(C1,C2) & min(f,Umf(C1,C2)) = f &
max(f,Zmf(C1,C2)) = f & min(f,Zmf(C1,C2)) = Zmf(C1,C2)
proof
Zmf(C1,C2) = EMF [:C1,C2:] & Umf(C1,C2) = UMF [:C1,C2:] by Th45,Th46;
hence thesis by FUZZY_1:32;
end;
canceled 7;
theorem
1_minus(Zmf(C1,C2)) = Umf(C1,C2) & 1_minus(Umf(C1,C2)) = Zmf(C1,C2)
proof
Zmf(C1,C2) = EMF [:C1,C2:] & Umf(C1,C2) = UMF [:C1,C2:] by Th45,Th46;
hence thesis by FUZZY_1:62;
end;
canceled 59;
theorem
min(f,1_minus g) = Zmf(C1,C2) implies
for c being Element of [:C1,C2:] holds f.c <= g.c
proof Zmf(C1,C2) = EMF [:C1,C2:] by Th45;
hence thesis by FUZZY_2:59;
end;
canceled;
theorem
min(f,g) = Zmf(C1,C2) implies min(f,1_minus g) = f
proof Zmf(C1,C2) = EMF [:C1,C2:] by Th45;
hence thesis by FUZZY_2:61;
end;