Copyright (c) 1999 Association of Mizar Users
environ vocabulary ARYTM, RCOMP_1, ARYTM_3, SIN_COS, ARYTM_1, SQUARE_1, RFUNCT_2, FDIFF_1, FUNCT_1, PARTFUN1, RELAT_1, ORDINAL2, VECTSP_1, SEQ_1, SEQ_2, SEQM_3, BOOLE, PRE_TOPC, FCONT_1, SIN_COS2, FINSEQ_4, GROUP_1; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, RELAT_1, FCONT_1, FDIFF_1, NAT_1, FINSEQ_4, SQUARE_1, PREPOWER, PARTFUN1, SEQ_2, SEQM_3, RCOMP_1, RFUNCT_1, RFUNCT_2, SIN_COS, SEQ_1, VECTSP_1; constructors NAT_1, COMSEQ_3, REAL_1, SEQ_2, RCOMP_1, FINSEQ_4, FCONT_1, RFUNCT_1, FDIFF_1, GOBOARD1, SQUARE_1, PREPOWER, PARTFUN1, RFUNCT_2, SIN_COS, MEMBERED; clusters XREAL_0, RELSET_1, FDIFF_1, RCOMP_1, SEQ_1, MEMBERED, NUMBERS, ORDINAL2; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; theorems AXIOMS, REAL_1, REAL_2, SEQ_1, SEQM_3, SEQ_4, SQUARE_1, FINSEQ_4, RCOMP_1, FUNCT_1, FDIFF_1, FDIFF_2, FCONT_3, TARSKI, FUNCT_2, RFUNCT_1, SUBSET_1, RFUNCT_2, RELSET_1, PARTFUN1, ROLLE, SIN_COS, VECTSP_1, NEWTON, XREAL_0, TOPREAL5, JORDAN6, RELAT_1, XBOOLE_0, XCMPLX_0, XCMPLX_1; schemes NAT_1, PARTFUN2; begin :: Monotone increasing and monotone decreasing of sine and cosine. reserve p,q,r,th for Real; reserve n for Nat; Lm1: ( for a, b be real number holds (for th holds th in [.a,b.] iff a<=th & th<=b) & (for th holds th in ].a,b.[ iff a<th & th<b) ) & (for x, y be real number st x <y holds (for a be real number st a>0 holds (a * x < a * y & x/a < y/a))) & (for x, y be real number st x < y & 0< x holds 1 < y/x) proof thus for a, b be real number holds (for th holds th in [.a,b.] iff a<=th & th<=b) & (for th holds th in ].a,b.[ iff a<th & th<b) by JORDAN6:45,TOPREAL5:1; now let x, y be real number such that A1: x <y; now let a be real number; assume a>0; hence a * x < a * y & x/a < y/a by A1,REAL_1:70,73; end; hence for a be real number st a>0 holds a * x < a * y & x/a < y/a; end; hence thesis by REAL_2:142; end; Lm2: 0 < PI/2 & PI/2 < PI & PI < 3/2*PI & 3/2*PI < 2*PI proof A1: 0 < PI/2 proof PI in ].0, 4.[ by SIN_COS:def 30; then 0< PI & PI < 4 by Lm1; then 0/2 <PI/2 by REAL_1:73; hence 0< PI/2; end; A2: PI/2 < PI proof 0 + PI/2 < PI/2 + PI/2 by A1,REAL_1:53; hence PI/2 < PI by XCMPLX_1:66; end; A3: PI < 3/2*PI proof A4: PI/2 + PI/2 < PI + PI/2 by A2,REAL_1:53; PI + PI/2 = ((2/2)*PI + 1*(PI/2)) .= (2*PI)/2 + 1*(PI/2) + 0*(PI/2) by XCMPLX_1:75 .= 2*(PI/2) + 1*(PI/2) + 0*(PI/2) by XCMPLX_1:75 .= (2 + 1 + 0)*(PI/2) by XCMPLX_1:9 .= (3*PI)/2 by XCMPLX_1:75 .= 3/2*PI by XCMPLX_1:75; hence thesis by A4,XCMPLX_1:66; end; 3/2*PI < 2*PI proof A5: PI + PI/2 = ((2/2)*PI + 1*(PI/2)) .= (2*PI)/2 + 1*(PI/2) + 0*(PI/2) by XCMPLX_1:75 .= 2*(PI/2) + 1*(PI/2) + 0*(PI/2) by XCMPLX_1:75 .= (2 + 1 + 0)*(PI/2) by XCMPLX_1:9 .= (3*PI)/2 by XCMPLX_1:75 .= 3/2*PI by XCMPLX_1:75; PI/2 + 3/2*PI = 1*(PI/2) + 3*PI/2 + 0 by XCMPLX_1:75 .= 1*(PI/2) + 3*(PI/2) + 0*(PI/2) by XCMPLX_1:75 .= (1+3+0)*(PI/2) by XCMPLX_1:9 .= (4*PI)/2 by XCMPLX_1:75 .= 4/2*PI by XCMPLX_1:75 .= 2*PI; hence 3/2*PI < 2*PI by A3,A5,REAL_1:53; end; hence thesis by A1,A2,A3; end; Lm3: (3/2*PI + PI/2 = 2*PI) & (PI + PI/2 = 3/2*PI) & (PI/2 + PI/2 = PI) & (2*PI - PI/2 = 3/2*PI) & (3/2*PI - PI/2 = PI) & (PI - PI/2 = PI/2) proof A1:3/2*PI + PI/2 = 2*PI proof PI/2 + 3/2*PI = 1*(PI/2) + 3*PI/2 + 0 by XCMPLX_1:75 .= 1*(PI/2) + 3*(PI/2) + 0*(PI/2) by XCMPLX_1:75 .= (1+3+0)*(PI/2) by XCMPLX_1:9 .= (4*PI)/2 by XCMPLX_1:75 .= 4/2*PI by XCMPLX_1:75 .= 2*PI; hence thesis; end; A2:PI + PI/2 = 3/2*PI proof PI + PI/2 = ((2/2)*PI + 1*(PI/2)) .= (2*PI)/2 + 1*(PI/2) + 0*(PI/2) by XCMPLX_1:75 .= 2*(PI/2) + 1*(PI/2) + 0*(PI/2) by XCMPLX_1:75 .= (2 + 1 + 0)*(PI/2) by XCMPLX_1:9 .= (3*PI)/2 by XCMPLX_1:75 .= 3/2*PI by XCMPLX_1:75; hence thesis; end; PI/2 + PI/2 = PI by XCMPLX_1:66; hence thesis by A1,A2,XCMPLX_1:26; end; theorem Th1: p>=0 & r>=0 implies p+r>=2*sqrt(p*r) proof assume A1:p>=0 & r>=0; A2:(sqrt p - sqrt r)^2>=0 by SQUARE_1:72; (sqrt p - sqrt r)^2 =(sqrt p)^2 - 2*sqrt p*sqrt r + (sqrt r)^2 by SQUARE_1:64 .=p-2*sqrt p*sqrt r + (sqrt r)^2 by A1,SQUARE_1:def 4 .=p -2*sqrt p*sqrt r +r by A1,SQUARE_1:def 4 .=p+r-2*sqrt p*sqrt r by XCMPLX_1:29; then 0+2*sqrt p*sqrt r <= p+r by A2,REAL_1:84; then 2*(sqrt p*sqrt r) <= p+r by XCMPLX_1:4; hence 2*sqrt(p*r) <= p+r by A1,SQUARE_1:97; end; theorem sin is_increasing_on ].0,PI/2.[ proof A1: sin is_differentiable_on ].0,PI/2.[ by FDIFF_1:34,SIN_COS:73; for th be Real st th in ].0,PI/2.[ holds 0 < diff(sin,th) proof let th be Real; assume th in ].0,PI/2.[; then cos.th > 0 by SIN_COS:85; hence diff(sin,th) > 0 by SIN_COS:73; end; hence thesis by A1,Lm2,ROLLE:9; end; Lm4: for th st th in ].0,PI/2.[ holds 0 < sin.th proof let th; assume th in ].0,PI/2.[; then 0 < th & th < PI/2 by Lm1; then 0-th<0 & -th>-PI/2 by REAL_1:50,REAL_2:105; then -th<0 & -th>-PI/2 by XCMPLX_1:150; then -th+PI/2 < 0+PI/2 & -th+PI/2 > -PI/2+ PI/2 by REAL_1:53; then PI/2-th < PI/2 & PI/2+ -th > PI/2-PI/2 by XCMPLX_0:def 8; then PI/2-th < PI/2 & PI/2-th > PI/2-PI/2 by XCMPLX_0:def 8; then 0 < PI/2-th & PI/2-th < PI/2 by XCMPLX_1:14; then PI/2-th in ].0,PI/2.[ by Lm1; then cos.(PI/2-th) > 0 by SIN_COS:85; hence sin.th > 0 by SIN_COS:83; end; theorem sin is_decreasing_on ].PI/2,PI.[ proof A1: sin is_differentiable_on ].PI/2,PI.[ by FDIFF_1:34,SIN_COS:73; for th1 be Real st th1 in ].PI/2,PI.[ holds 0 > diff(sin,th1) proof let th1 be Real; assume th1 in ].PI/2,PI.[; then PI/2 < th1 & th1 < PI by Lm1; then A2:PI/2 - PI/2 < th1 - PI/2 & th1 - PI/2 < PI - PI/2 by REAL_1:54; PI/2+ 0 = PI/2; then A3: PI/2 - PI/2 = 0 by XCMPLX_1:26; then A4: th1-PI/2 in ].0,PI/2.[ by A2,Lm1,Lm3; A5: diff(sin,(th1))=cos.(th1+(PI/2-PI/2)) by A3,SIN_COS:73 .=cos.(th1+PI/2-PI/2) by XCMPLX_1:29 .=cos.(PI/2+(th1-PI/2)) by XCMPLX_1:29 .=-sin.(th1-PI/2) by SIN_COS:83; sin.(th1-PI/2) > 0 by A4,Lm4; then 0-sin.(th1-PI/2) < 0 by REAL_2:105; hence diff(sin,(th1)) < 0 by A5,XCMPLX_1:150; end; hence thesis by A1,Lm2,ROLLE:10; end; theorem cos is_decreasing_on ].0,PI/2.[ proof A1: cos is_differentiable_on ].0,PI/2.[ by FDIFF_1:34,SIN_COS:72; for th be Real st th in ].0,PI/2.[ holds diff(cos,th) < 0 proof let th be Real such that A2: th in ].0,PI/2.[; A3: diff(cos,th) = -sin.(th) by SIN_COS:72; 0 < sin.(th) by A2,Lm4; then 0-sin.(th) < 0 by REAL_2:105; hence diff(cos,th) < 0 by A3,XCMPLX_1:150; end; hence thesis by A1,Lm2,ROLLE:10; end; theorem cos is_decreasing_on ].PI/2,PI.[ proof A1: cos is_differentiable_on ].PI/2,PI.[ by FDIFF_1:34,SIN_COS:72; for th be Real st th in ].PI/2,PI.[ holds diff(cos,th) < 0 proof let th be Real; assume th in ].PI/2,PI.[; then PI/2 < th & th < PI by Lm1; then A2:PI/2 - PI/2 < th - PI/2 & th - PI/2 < PI - PI/2 by REAL_1:54; PI/2+ 0 = PI/2; then A3: PI/2 - PI/2 = 0 by XCMPLX_1:26; then A4: th-PI/2 in ].0,PI/2.[ by A2,Lm1,Lm3; A5:diff(cos,(th))=-sin.(th+(PI/2-PI/2)) by A3,SIN_COS:72 .=-sin.(th+PI/2-PI/2) by XCMPLX_1:29 .=-sin.(PI/2+(th-PI/2)) by XCMPLX_1:29 .=-cos.(th-PI/2) by SIN_COS:83; cos.(th-PI/2) > 0 by A4,SIN_COS:85; then 0-cos.(th-PI/2) < 0 by REAL_2:105; hence diff(cos,(th)) < 0 by A5,XCMPLX_1:150; end; hence thesis by A1,Lm2,ROLLE:10; end; theorem sin is_decreasing_on ].PI,3/2*PI.[ proof A1: sin is_differentiable_on ].PI,3/2*PI.[ by FDIFF_1:34,SIN_COS:73; for th be Real st th in ].PI,3/2*PI.[ holds diff(sin,(th))<0 proof let th be Real such that A2:th in ].PI,3/2*PI.[; A3:diff(sin,(th))= cos.(th + 0) by SIN_COS:73 .= cos.(th + (PI-PI)) by XCMPLX_1:14 .= cos.(th+PI-PI) by XCMPLX_1:29 .= cos.(PI+(th-PI)) by XCMPLX_1:29 .= -cos.(th-PI) by SIN_COS:83; PI < th & th < 3/2*PI by A2,Lm1; then PI-PI < th-PI & th-PI < 3/2*PI-PI by REAL_1:54; then 0<th-PI & th-PI < PI/2 by Lm3,XCMPLX_1:14,36; then th-PI in ].0,PI/2.[ by Lm1; then cos.(th-PI) > 0 by SIN_COS:85; then 0-cos.(th-PI) < 0 by REAL_2:105; hence diff(sin,(th)) < 0 by A3,XCMPLX_1:150; end; hence thesis by A1,Lm2,ROLLE:10; end; theorem sin is_increasing_on ].3/2*PI,2*PI.[ proof A1: sin is_differentiable_on ].3/2*PI,2*PI.[ by FDIFF_1:34,SIN_COS:73; for th be Real st th in ].3/2*PI,2*PI.[ holds diff(sin,(th))>0 proof let th be Real such that A2:th in ].3/2*PI,2*PI.[; A3:diff(sin,(th)) = cos.(th + 0) by SIN_COS:73 .= cos.(th + (3/2*PI-3/2*PI)) by XCMPLX_1:14 .= cos.(th+3/2*PI-3/2*PI) by XCMPLX_1:29 .= cos.(3/2*PI+(th-3/2*PI)) by XCMPLX_1:29 .= cos.(PI + (PI/2+(th-3/2*PI))) by Lm3,XCMPLX_1:1 .= -cos.(PI/2+(th-3/2*PI)) by SIN_COS:83 .= -(-sin.(th-3/2*PI)) by SIN_COS:83 .= sin.(th-3/2*PI); 3/2*PI < th & th < 2*PI by A2,Lm1; then A4:3/2*PI-3/2*PI < th-3/2*PI & th-3/2*PI < 2*PI-3/2*PI by REAL_1:54; 2*PI-3/2*PI = 3/2*PI - (PI/2 + PI/2) by Lm3,XCMPLX_1:36 .= PI/2 by Lm3,XCMPLX_1:36; then 0<th-3/2*PI & th-3/2*PI < PI/2 by A4,XCMPLX_1:14; then th-3/2*PI in ].0,PI/2.[ by Lm1; hence diff(sin,(th)) > 0 by A3,Lm4; end; hence thesis by A1,Lm2,ROLLE:9; end; theorem cos is_increasing_on ].PI,3/2*PI.[ proof A1: cos is_differentiable_on ].PI,3/2*PI.[ by FDIFF_1:34,SIN_COS:72; for th be Real st th in ].PI,3/2*PI.[ holds diff(cos,(th))>0 proof let th be Real such that A2:th in ].PI,3/2*PI.[; A3:diff(cos,(th)) = -sin.(th + 0) by SIN_COS:72 .= -sin.(th + (PI-PI)) by XCMPLX_1:14 .= -sin.(th+PI-PI) by XCMPLX_1:29 .= -sin.(PI+(th-PI)) by XCMPLX_1:29 .= -(-sin.(th-PI)) by SIN_COS:83 .= sin.(th-PI); PI < th & th < 3/2*PI by A2,Lm1; then PI-PI < th-PI & th-PI < 3/2*PI-PI by REAL_1:54; then 0<th-PI & th-PI < PI/2 by Lm3,XCMPLX_1:14,36; then th-PI in ].0,PI/2.[ by Lm1; hence diff(cos,(th)) > 0 by A3,Lm4; end; hence thesis by A1,Lm2,ROLLE:9; end; theorem cos is_increasing_on ].3/2*PI,2*PI.[ proof A1: cos is_differentiable_on ].3/2*PI,2*PI.[ by FDIFF_1:34,SIN_COS:72; for th be Real st th in ].3/2*PI,2*PI.[ holds diff(cos,(th))>0 proof let th be Real such that A2:th in ].3/2*PI,2*PI.[; A3: diff(cos,(th)) = -sin.(th + 0) by SIN_COS:72 .= -sin.(th + (3/2*PI-3/2*PI)) by XCMPLX_1:14 .= -sin.(th+3/2*PI-3/2*PI) by XCMPLX_1:29 .= -sin.((PI + PI/2)+(th-3/2*PI)) by Lm3,XCMPLX_1:29 .= -sin.(PI + (PI/2+(th-3/2*PI))) by XCMPLX_1:1 .= -(-sin.(PI/2+(th-3/2*PI))) by SIN_COS:83 .= cos.(th-3/2*PI) by SIN_COS:83; 3/2*PI < th & th < 2*PI by A2,Lm1; then A4:3/2*PI-3/2*PI < th-3/2*PI & th-3/2*PI < 2*PI-3/2*PI by REAL_1:54; 2*PI-3/2*PI = 2*PI -PI/2 -PI by Lm3,XCMPLX_1:36 .= PI/2 by Lm3,XCMPLX_1:36; then 0<th-3/2*PI & th-3/2*PI < PI/2 by A4,XCMPLX_1:14; then th-3/2*PI in ].0,PI/2.[ by Lm1; hence diff(cos,(th)) > 0 by A3,SIN_COS:85; end; hence thesis by A1,Lm2,ROLLE:9; end; theorem sin.th = sin.(2*PI*n + th) proof defpred X[Nat] means for th holds sin.th = sin.(2*PI*$1 + th); A1: X[0]; A2:for n st X[n] holds X[n+1] proof let n such that A3:for th holds sin.th = sin.(2*PI*n + th); for th holds sin.th = sin.(2*PI*(n+1) + th) proof let th; sin.(2*PI*(n+1) + th) = sin.((2*PI)*n+(2*PI)*1 + th) by XCMPLX_1:8 .= sin.((2*PI*n+th) + 2*PI) by XCMPLX_1:1 .= sin.(2*PI*n + th) by SIN_COS:83 .= sin.th by A3; hence thesis; end; hence thesis; end; for n holds X[n] from Ind(A1,A2); hence thesis; end; theorem cos.th = cos.(2*PI*n + th) proof defpred X[Nat] means for th holds cos.th = cos.(2*PI*$1 + th); A1: X[0]; A2: for n st X[n] holds X[n+1] proof let n such that A3:for th holds cos.th = cos.(2*PI*n + th); for th holds cos.th = cos.(2*PI*(n+1) + th) proof let th; cos.(2*PI*(n+1) + th) = cos.((2*PI)*n+(2*PI)*1 + th) by XCMPLX_1:8 .= cos.((2*PI*n+th) + 2*PI) by XCMPLX_1:1 .= cos.(2*PI*n + th) by SIN_COS:83 .= cos.th by A3; hence thesis; end; hence thesis; end; for n holds X[n] from Ind(A1,A2); hence thesis; end; begin ::Hyperbolic sine, hyperbolic cosine and hyperbolic tangent. definition func sinh -> PartFunc of REAL, REAL means :Def1: dom it= REAL & for d being real number holds it.d=(exp.(d) - exp.(-d))/2; existence proof defpred X[set] means $1 in REAL; deffunc U(Real) = (exp.($1) - exp.(-$1))/2; consider f being PartFunc of REAL, REAL such that A1: for d be Element of REAL holds d in dom f iff X[d] and A2: for d be Element of REAL st d in dom f holds f/.d = U(d) from LambdaPFD; take f; thus dom(f)=REAL proof A3: dom(f) c=REAL by RELSET_1:12; for x be set st x in REAL holds x in dom f by A1; then REAL c=dom(f) by TARSKI:def 3; hence dom(f)=REAL by A3,XBOOLE_0:def 10; end; let d be real number; A4: d is Real by XREAL_0:def 1; then A5: d in dom f by A1; then f/.d = (exp.(d) - exp.(-d))/2 by A2,A4; hence f.d = (exp.(d) - exp.(-d))/2 by A5,FINSEQ_4:def 4; end; uniqueness proof let f1,f2 be PartFunc of REAL, REAL; assume A6: dom f1= REAL & for d being real number holds f1.d=(exp.(d) - exp.(-d))/2; assume A7: dom f2= REAL & for d being real number holds f2.d=(exp.(d) - exp.(-d))/2; for d being Element of REAL st d in REAL holds f1.d = f2.d proof let d be Element of REAL such that d in REAL; thus f1.d=(exp.(d) - exp.(-d))/2 by A6 .=f2.d by A7; end; hence f1=f2 by A6,A7,PARTFUN1:34; end; end; definition let d be number; func sinh(d) equals :Def2: sinh.d; correctness; end; definition let d be number; cluster sinh(d) -> real; coherence proof sinh(d) = sinh.d by Def2; hence thesis; end; end; definition let d be number; redefine func sinh(d) -> Real; coherence by XREAL_0:def 1; end; definition func cosh -> PartFunc of REAL, REAL means :Def3: dom it= REAL & for d being real number holds it.d=(exp.(d) + exp.(-d))/2; existence proof defpred X[set] means $1 in REAL; deffunc U(Real) = (exp.($1) + exp.(-$1))/2; consider f being PartFunc of REAL, REAL such that A1: for d be Element of REAL holds d in dom f iff X[d] and A2: for d be Element of REAL st d in dom f holds f/.d = U(d) from LambdaPFD; take f; thus dom(f)=REAL proof A3: dom(f) c=REAL by RELSET_1:12; for x be set st x in REAL holds x in dom f by A1; then REAL c=dom(f) by TARSKI:def 3; hence dom(f)=REAL by A3,XBOOLE_0:def 10; end; let d be real number; A4: d is Real by XREAL_0:def 1; then A5: d in dom f by A1; then f/.d = (exp.(d) + exp.(-d))/2 by A2,A4; hence f.d = (exp.(d) + exp.(-d))/2 by A5,FINSEQ_4:def 4; end; uniqueness proof let f1,f2 be PartFunc of REAL, REAL; assume A6: dom f1= REAL & for d being real number holds f1.d=(exp.(d) + exp.(-d))/2; assume A7: dom f2= REAL & for d being real number holds f2.d=(exp.(d) + exp.(-d))/2; for d being Element of REAL st d in REAL holds f1.d = f2.d proof let d be Element of REAL such that d in REAL; thus f1.d=(exp.(d) + exp.(-d))/2 by A6 .=f2.d by A7; end; hence f1=f2 by A6,A7,PARTFUN1:34; end; end; definition let d be number; func cosh(d) equals :Def4: cosh.d; correctness; end; definition let d be number; cluster cosh(d) -> real; coherence proof cosh(d) = cosh.d by Def4; hence thesis; end; end; definition let d be number; redefine func cosh(d) -> Real; coherence by XREAL_0:def 1; end; definition func tanh -> PartFunc of REAL, REAL means :Def5: dom it= REAL & for d being real number holds it.d=(exp.(d) - exp.(-d))/(exp.(d) + exp.(-d)); existence proof defpred X[set] means $1 in REAL; deffunc U(Real) = (exp.($1) - exp.(-$1))/(exp.($1) + exp.(-$1)); consider f being PartFunc of REAL, REAL such that A1: for d be Element of REAL holds d in dom f iff X[d] and A2: for d be Element of REAL st d in dom f holds f/.d = U(d) from LambdaPFD; take f; thus dom(f)=REAL proof A3: dom(f) c=REAL by RELSET_1:12; for x be set st x in REAL holds x in dom f by A1; then REAL c=dom(f) by TARSKI:def 3; hence dom(f)=REAL by A3,XBOOLE_0:def 10; end; let d be real number; A4: d is Real by XREAL_0:def 1; then A5: d in dom f by A1; then f/.d = (exp.(d) - exp.(-d))/(exp.(d) + exp.(-d)) by A2,A4; hence f.d = (exp.(d) - exp.(-d))/(exp.(d) + exp.(-d)) by A5,FINSEQ_4:def 4; end; uniqueness proof let f1,f2 be PartFunc of REAL, REAL; assume A6: dom f1= REAL & for d being real number holds f1.d=(exp.(d) - exp.(-d))/(exp.(d) + exp.(-d)); assume A7: dom f2= REAL & for d being real number holds f2.d=(exp.(d) - exp.(-d))/(exp.(d) + exp.(-d)); for d being Element of REAL st d in REAL holds f1.d = f2.d proof let d be Element of REAL such that d in REAL; thus f1.d=(exp.(d) - exp.(-d))/(exp.(d) + exp.(-d)) by A6 .=f2.d by A7; end; hence f1=f2 by A6,A7,PARTFUN1:34; end; end; definition let d be number; func tanh(d) equals :Def6: tanh.d; correctness; end; definition let d be number; cluster tanh(d) -> real; correctness proof tanh(d) = tanh.d by Def6; hence thesis; end; end; definition let d be number; redefine func tanh(d) -> Real; correctness by XREAL_0:def 1; end; theorem Th12: exp.(p+q) = exp.(p) * exp.(q) proof exp.(p+q) = exp(p+q) by SIN_COS:def 27 .= exp(p) * exp(q) by SIN_COS:55 .= exp.(p) * exp(q) by SIN_COS:def 27 .= exp.(p) * exp.(q) by SIN_COS:def 27; hence thesis; end; theorem Th13: exp.0 = 1 by SIN_COS:56,def 27; theorem Th14: (cosh.p)^2-(sinh.p)^2=1 & (cosh.p)*(cosh.p)-(sinh.p)*(sinh.p)=1 proof A1: (cosh.p)*(cosh.p) = ((exp.(p) + exp.(-p))/2)*(cosh.p) by Def3 .= ((exp.(p) + exp.(-p))/2)*((exp.(p) + exp.(-p))/2) by Def3 .= ((exp.(p) + exp.(-p))*(exp.(p) + exp.(-p)))/(2*2) by XCMPLX_1:77 .= ((exp.(p))*(exp.(p))+(exp.(p))*(exp.(-p)) +(exp.(-p))*(exp.(p))+(exp.(-p))*(exp.(-p)))/(2*2) by XCMPLX_1:10 .= ((exp.(p+p))+(exp.(p))*(exp.(-p)) +(exp.(-p))*(exp.(p))+(exp.(-p))*(exp.(-p)))/4 by Th12 .= ((exp.(p+p))+(exp.(p+-p)) +(exp.(-p))*(exp.(p))+(exp.(-p))*(exp.(-p)))/4 by Th12 .= ((exp.(p+p))+(exp.(p+-p)) +(exp.(-p))*(exp.(p))+(exp.(-p+-p)))/4 by Th12 .= ((exp.(p+p)) + (exp.(p+-p)) + (exp.(-p+p)) + (exp.(-p+-p)))/4 by Th12 .= ((exp.(p+p)) + (exp.(0)) + (exp.(-p+p)) + (exp.(-p+-p)))/4 by XCMPLX_0:def 6 .= ((exp.(p+p)) + 1 + 1 + (exp.(-p+-p)))/4 by Th13,XCMPLX_0:def 6 .=(((exp.(p+p)) + ( 1 + 1 )) + (exp.(-p+-p)))/4 by XCMPLX_1:1 .= ((exp.(p+p)) + 2 + (exp.(-p+-p)))/4; (sinh.p)*(sinh.p) = ((exp.(p) - exp.(-p))/2)*(sinh.p) by Def1 .= ((exp.(p) - exp.(-p))/2)*((exp.(p) - exp.(-p))/2) by Def1 .= ((exp.(p) - exp.(-p))*(exp.(p) - exp.(-p)))/(2*2) by XCMPLX_1:77 .= ((exp.(p))*(exp.(p))-(exp.(p))*(exp.(-p)) -(exp.(-p))*(exp.(p))+(exp.(-p))*(exp.(-p)))/(2*2) by XCMPLX_1:47 .= ((exp.(p+p))-(exp.(p))*(exp.(-p)) -(exp.(-p))*(exp.(p))+(exp.(-p))*(exp.(-p)))/4 by Th12 .= ((exp.(p+p))-(exp.(p+-p)) -(exp.(-p))*(exp.(p))+(exp.(-p))*(exp.(-p)))/4 by Th12 .= ((exp.(p+p))-(exp.(p+-p)) -(exp.(-p))*(exp.(p))+(exp.(-p+-p)))/4 by Th12 .= ((exp.(p+p)) - (exp.(p+-p)) - (exp.(-p+p)) + (exp.(-p+-p)))/4 by Th12 .= ((exp.(p+p)) - (exp.(0)) - (exp.(-p+p)) + (exp.(-p+-p)))/4 by XCMPLX_0:def 6 .= ((exp.(p+p)) - 1 - 1 + (exp.(-p+-p)))/4 by Th13,XCMPLX_0:def 6; then A2: (cosh.p)*(cosh.p)-(sinh.p)*(sinh.p) =(((exp.(p+p)) + 2 + (exp.(-p+-p)))-((exp.(p+p)) - 1 - 1 + (exp.(-p+-p))))/4 by A1,XCMPLX_1:121 .=(((exp.(p+p)) + 2 + (exp.(-p+-p)))-((exp.(p+p)) - 1 - 1)-(exp.(-p+-p)))/4 by XCMPLX_1:36 .=(((exp.(p+p)) + 2 + (exp.(-p+-p)))+-((exp.(p+p)) - 1 - 1)-(exp.(-p+-p)))/4 by XCMPLX_0:def 8 .=((exp.(p+p))+2+(exp.(-p+-p))+(-(exp.(p+p))+1+1)-(exp.(-p+-p)))/4 by XCMPLX_1:170 .=((exp.(p+p))+2+(exp.(-p+-p))+(-(exp.(p+p))+(1+1))-(exp.(-p+-p)))/4 by XCMPLX_1:1 .=(((exp.(p+p))+(2+(exp.(-p+-p))))+(-(exp.(p+p))+2)-(exp.(-p+-p)))/4 by XCMPLX_1:1 .=((exp.(p+p))+(-(exp.(p+p))+2)+(2+(exp.(-p+-p)))-(exp.(-p+-p)))/4 by XCMPLX_1:1 .=(((exp.(p+p))+-(exp.(p+p)))+2+(2+(exp.(-p+-p)))-(exp.(-p+-p)))/4 by XCMPLX_1:1 .=(0+2+(2+(exp.(-p+-p)))-(exp.(-p+-p)))/4 by XCMPLX_0:def 6 .=(2+2+(exp.(-p+-p))-(exp.(-p+-p)))/4 by XCMPLX_1:1 .=(-(exp.(-p+-p))+(exp.(-p+-p))+4)/4 by XCMPLX_1:155 .=(0+4)/4 by XCMPLX_0:def 6 .=1; (cosh.p)^2-(sinh.p)^2 = (cosh.p)*(cosh.p) - (sinh.p)^2 by SQUARE_1:def 3 .= 1 by A2,SQUARE_1:def 3; hence thesis by A2; end; Lm5: for a1 be real number holds p+q+r+a1+p-q-r+a1 = p+p+a1+a1 & p+q+r+a1+p-q-r+a1 = 2*p + 2*a1 & p+q+r+a1+p-q-r+a1 = (p+q+r+a1)+(p-q-r+a1) & (p+q+r+a1)+(p-q-r+a1) = 2*p + 2*a1 & (p+q-r-a1)+(p-q+r-a1) = 2*p+2*(-a1) proof let a1 be real number; A1: p+q+r+a1+p-q-r+a1=(q+(p+r))+a1+p-q-r+a1 by XCMPLX_1:1 .=q+((p+r)+a1)+p-q-r+a1 by XCMPLX_1:1 .=q+(((p+r)+a1)+p)-q-r+a1 by XCMPLX_1:1 .=-q+q+(((p+r)+a1)+p)-r+a1 by XCMPLX_1:155 .=0+(((p+r)+a1)+p)-r+a1 by XCMPLX_0:def 6 .=r+(p+a1)+p-r+a1 by XCMPLX_1:1 .=r+((p+a1)+p)-r+a1 by XCMPLX_1:1 .=-r+r+((p+a1)+p)+a1 by XCMPLX_1:155 .=0+((p+a1)+p)+a1 by XCMPLX_0:def 6 .=p+p+a1+a1 by XCMPLX_1:1; then A2: p+q+r+a1+p-q-r+a1 =2*p +a1+a1 by XCMPLX_1:11 .=2*p +(a1+a1) by XCMPLX_1:1 .=2*p + 2*a1 by XCMPLX_1:11; A3: (p+q+r+a1)+(p-q-r+a1) = (p+q+r+a1)+(p-(q+r)+a1) by XCMPLX_1:36 .= (p+q+r+a1)+(p-(q+r)) + a1 by XCMPLX_1:1 .= (p+q+r+a1)+p-(q+r) + a1 by XCMPLX_1:29 .= p+q+r+a1+p-q-r+ a1 by XCMPLX_1:36; (p+q-r-a1)+(p-q+r-a1) =p+q-r-a1 +(p-(q-r)-a1) by XCMPLX_1:37 .=p+q+-r-a1+(p-(q-r)-a1) by XCMPLX_0:def 8 .=p+(q+-r)-a1+(p-(q-r)-a1) by XCMPLX_1:1 .=(q+-r)+p-a1+(-(q-r)+p-a1) by XCMPLX_0:def 8 .=((q+-r)+p-a1)+(-(q-r)+p+-a1) by XCMPLX_0:def 8 .=((q+-r)+p-a1)+(-(q-r)+(p+-a1)) by XCMPLX_1:1 .=((q+-r)+p+-a1)+(-(q-r)+(p+-a1)) by XCMPLX_0:def 8 .=((q+-r)+(p+-a1))+(-(q-r)+(p+-a1)) by XCMPLX_1:1 .=(p+-a1)+((q+-r)+(-(q-r)+(p+-a1))) by XCMPLX_1:1 .=(p+-a1)+( ((q+-r)+-(q-r))+(p+-a1) ) by XCMPLX_1:1 .=(p+-a1)+( ((q-r)+-(q-r))+(p+-a1) ) by XCMPLX_0:def 8 .=(p+-a1)+( (0)+(p+-a1) ) by XCMPLX_0:def 6 .=2*(p+-a1) by XCMPLX_1:11 .=2*p+2*(-a1) by XCMPLX_1:8; hence thesis by A1,A2,A3; end; Lm6: cosh.(p+r)=(cosh.p)*(cosh.r) + (sinh.p)*(sinh.r) proof (cosh.p)*(cosh.r) + (sinh.p)*(sinh.r) =((exp.(p) + exp.(-p))/2)*(cosh.r) +(sinh.p)*(sinh.r) by Def3 .=((exp.(p) + exp.(-p))/2)*((exp.(r) + exp.(-r))/2) +(sinh.p)*(sinh.r) by Def3 .=((exp.(p) + exp.(-p))/2)*((exp.(r) + exp.(-r))/2) +((exp.(p) - exp.(-p))/2)*(sinh.r) by Def1 .=((exp.(p) + exp.(-p))/2)*((exp.(r) + exp.(-r))/2) +((exp.(p) - exp.(-p))/2)*((exp.(r) - exp.(-r))/2) by Def1 .=((exp.(p) + exp.(-p))*(exp.(r) + exp.(-r)))/(2*2) +((exp.(p) - exp.(-p))/2)*((exp.(r) - exp.(-r))/2) by XCMPLX_1:77 .=((exp.(p) + exp.(-p))*(exp.(r) + exp.(-r)))/(4) +((exp.(p) - exp.(-p))*(exp.(r) - exp.(-r)))/(2*2) by XCMPLX_1:77 .=( (exp.(p))*(exp.(r))+(exp.(p))*(exp.(-r)) +(exp.(-p))*(exp.(r))+(exp.(-p))*(exp.(-r)) )/4 +((exp.(p) - exp.(-p))*(exp.(r) - exp.(-r)))/(2*2) by XCMPLX_1:10 .=( (exp.(p))*(exp.(r))+(exp.(p))*(exp.(-r)) +(exp.(-p))*(exp.(r))+(exp.(-p))*(exp.(-r)) )/4 +( (exp.(p))*(exp.(r))-(exp.(p))*(exp.(-r)) -(exp.(-p))*(exp.(r))+(exp.(-p))*(exp.(-r)) )/4 by XCMPLX_1:47 .=( ( (exp.(p))*(exp.(r))+(exp.(p))*(exp.(-r)) +(exp.(-p))*(exp.(r))+(exp.(-p))*(exp.(-r)) ) + ( (exp.(p))*(exp.(r))-(exp.(p))*(exp.(-r)) -(exp.(-p))*(exp.(r))+(exp.(-p))*(exp.(-r)) ) )/4 by XCMPLX_1:63 .=( 2*((exp.(p))*(exp.(r))) + 2*((exp.(-p))*(exp.(-r))) )/4 by Lm5 .=( 2*(exp.(p+r)) + 2*((exp.(-p))*(exp.(-r))) )/4 by Th12 .=( 2*(exp.(p+r)) + 2*(exp.(-p+-r)) )/4 by Th12 .=(2*(exp.(p+r)))/4 + ( 2*(exp.(-p+-r)) )/4 by XCMPLX_1:63 .=(exp.(p+r)+exp.(p+r))/4 + ( 2*(exp.(-p+-r)) )/4 by XCMPLX_1:11 .=(exp.(p+r)+exp.(p+r))/4 + (exp.(-p+-r) + exp.(-p+-r))/4 by XCMPLX_1:11 .=(exp.(p+r))/4 +(exp.(p+r))/4 + (exp.(-p+-r) + exp.(-p+-r))/4 by XCMPLX_1:63 .=(exp.(p+r))/2 + ((exp.(-p+-r) + exp.(-p+-r))/4) by XCMPLX_1:72 .=(exp.(p+r))/2 + ((exp.(-p+-r))/4 + (exp.(-p+-r))/4) by XCMPLX_1:63 .=(exp.(p+r))/2 + (exp.(-p+-r))/2 by XCMPLX_1:72 .=(exp.(p+r)+exp.(-p+-r))/2 by XCMPLX_1:63 .=(exp.(p+r)+exp.(-(p+r)))/2 by XCMPLX_1:140 .=cosh.(p+r) by Def3; hence thesis; end; Lm7: sinh.(p+r)=(sinh.p)*(cosh.r) + (cosh.p)*(sinh.r) proof (sinh.p)*(cosh.r) + (cosh.p)*(sinh.r) =((exp.(p) - exp.(-p))/2)*(cosh.r) + (cosh.p)*(sinh.r) by Def1 .=((exp.(p) - exp.(-p))/2)*((exp.(r) + exp.(-r))/2) + (cosh.p)*(sinh.r) by Def3 .=((exp.(p) - exp.(-p))/2)*((exp.(r) + exp.(-r))/2) + ((exp.(p) + exp.(-p))/2)*(sinh.r) by Def3 .=((exp.(p) - exp.(-p))/2)*((exp.(r) + exp.(-r))/2) + ((exp.(p) + exp.(-p))/2)*((exp.(r) - exp.(-r))/2) by Def1 .=((exp.(p) - exp.(-p))*(exp.(r) + exp.(-r)))/(2*2) +((exp.(p) + exp.(-p))/2)*((exp.(r) - exp.(-r))/2) by XCMPLX_1:77 .=((exp.(p) - exp.(-p))*(exp.(r) + exp.(-r)))/(4) +((exp.(p) + exp.(-p))*(exp.(r) - exp.(-r)))/(2*2) by XCMPLX_1:77 .=( (exp.(p))*(exp.(r))+(exp.(p))*(exp.(-r)) -(exp.(-p))*(exp.(r))-(exp.(-p))*(exp.(-r)) )/4 +((exp.(p) + exp.(-p))*(exp.(r) - exp.(-r)))/(2*2) by XCMPLX_1:46 .=( (exp.(p))*(exp.(r))+(exp.(p))*(exp.(-r)) -(exp.(-p))*(exp.(r))-(exp.(-p))*(exp.(-r)) )/4 +( (exp.(p))*(exp.(r))-(exp.(p))*(exp.(-r)) +(exp.(-p))*(exp.(r))-(exp.(-p))*(exp.(-r)) )/4 by XCMPLX_1:45 .=( ( (exp.(p))*(exp.(r))+(exp.(p))*(exp.(-r)) -(exp.(-p))*(exp.(r))-(exp.(-p))*(exp.(-r)) )+ ( (exp.(p))*(exp.(r))-(exp.(p))*(exp.(-r)) +(exp.(-p))*(exp.(r))-(exp.(-p))*(exp.(-r)) ) )/4 by XCMPLX_1:63 .=( 2*( (exp.(p))*(exp.(r)) )+2*( -((exp.(-p))*(exp.(-r))) ) )/4 by Lm5 .=( 2*(exp.(p+r))+2*( -(exp.(-p))*(exp.(-r)) ) )/4 by Th12 .=( 2*(exp.(p+r))+2*( -(exp.(-p+-r)) ) )/4 by Th12 .=(2*(exp.(p+r)))/4 + ( 2*(-exp.(-p+-r)) )/4 by XCMPLX_1:63 .=(exp.(p+r)+exp.(p+r))/4 + ( 2*(-exp.(-p+-r)) )/4 by XCMPLX_1:11 .=(exp.(p+r)+exp.(p+r))/4 + (-exp.(-p+-r) + -exp.(-p+-r))/4 by XCMPLX_1:11 .=(exp.(p+r))/4 +(exp.(p+r))/4 + (-exp.(-p+-r) + -exp.(-p+-r))/4 by XCMPLX_1:63 .=(exp.(p+r))/2 + ((-exp.(-p+-r) + -exp.(-p+-r))/4) by XCMPLX_1:72 .=(exp.(p+r))/2 + ((-exp.(-p+-r))/4 + (-exp.(-p+-r))/4) by XCMPLX_1:63 .=(exp.(p+r))/2 + (-exp.(-p+-r))/2 by XCMPLX_1:72 .=(exp.(p+r)+-exp.(-p+-r))/2 by XCMPLX_1:63 .=(exp.(p+r)+-exp.(-(p+r)))/2 by XCMPLX_1:140 .=(exp.(p+r)-exp.(-(p+r)))/2 by XCMPLX_0:def 8 .=sinh.(p+r) by Def1; hence thesis; end; theorem Th15: cosh.p <> 0 & cosh.p > 0 & cosh.0 = 1 proof A1: cosh.0 = 1 proof cosh.0 = (exp.0+exp.(-0))/2 by Def3 .= (1+exp.0)/2 by SIN_COS:56,def 27 .= (1+1)/2 by SIN_COS:56,def 27 .= 1; hence thesis; end; cosh.p > 0 proof exp.p > 0 & exp.(-p) > 0 by SIN_COS:59; then exp.p + exp.(-p) > 0+0 by REAL_1:67; then (exp.p+exp.(-p))/2 > 0 by REAL_2:127; hence thesis by Def3; end; hence thesis by A1; end; theorem Th16: sinh.0 = 0 proof sinh.0 = (exp.0-exp.(-0))/2 by Def1 .= (1-exp.0)/2 by SIN_COS:56,def 27 .= (1-1)/2 by SIN_COS:56,def 27 .= 0; hence thesis; end; theorem Th17: tanh.p = (sinh.p)/(cosh.p) proof (sinh.p)/(cosh.p) =((exp.(p) - exp.(-p))/2)/(cosh.p) by Def1 .=((exp.(p) - exp.(-p))/2)/((exp.(p) + exp.(-p))/2) by Def3 .=(exp.(p) - exp.(-p))/(exp.(p) + exp.(-p)) by XCMPLX_1:55 .=tanh.p by Def5; hence thesis; end; Lm8: for a1 be real number holds r<>0 & q<>0 & r*q + p*a1 <> 0 implies (p*q + r*a1)/(r*q + p*a1) = (p/r + a1/q)/(1 + (p/r)*(a1/q)) proof let a1 be real number; assume A1: r<>0 & q<>0 & r*q + p*a1 <> 0; then A2: r<>0 & q<>0 & r*q <> 0 & r*q + p*a1 <> 0 by XCMPLX_1:6; then (p*q + r*a1)/(r*q + p*a1) =( (p*q + r*a1)/(r*q) )/( (r*q + p*a1)/(r*q) ) by XCMPLX_1:55 .=( (p*q)/(r*q) + (r*a1)/(r*q) )/( (r*q + p*a1)/(r*q) ) by XCMPLX_1:63 .=( (p*q)/(r*q) + (r*a1)/(r*q) )/ ( (r*q)/(r*q) + (p*a1)/(r*q) ) by XCMPLX_1:63 .=( p/r + (a1*r)/(q*r) )/( (r*q)/(r*q) + (p*a1)/(r*q) ) by A1,XCMPLX_1:92 .=( p/r + a1/q )/( (r*q)/(r*q) + (p*a1)/(r*q) ) by A1,XCMPLX_1:92 .=( p/r + a1/q )/( 1 + (p*a1)/(r*q) ) by A2,XCMPLX_1:60 .=( p/r + a1/q )/( 1 + (p/r)*(a1/q) ) by XCMPLX_1:77; hence thesis; end; Lm9: tanh.(p+r) = (tanh.p + tanh.r)/(1+ (tanh.p)*(tanh.r)) proof A1: cosh.r <> 0 & cosh.p <> 0 & (cosh.p)*(cosh.r) + (sinh.p)*(sinh.r) <> 0 proof (cosh.p)*(cosh.r) + (sinh.p)*(sinh.r) =cosh.(p+r) by Lm6; hence thesis by Th15; end; tanh.(p+r) =(sinh.(p+r))/(cosh.(p+r)) by Th17 .=( (sinh.p)*(cosh.r) + (cosh.p)*(sinh.r) )/(cosh.(p+r)) by Lm7 .=( (sinh.p)*(cosh.r) + (cosh.p)*(sinh.r) )/ ( (cosh.p)*(cosh.r) + (sinh.p)*(sinh.r) ) by Lm6 .=( (sinh.p)/(cosh.p) + (sinh.r)/(cosh.r) )/ ( 1 + ( (sinh.p)/(cosh.p) )*( (sinh.r)/(cosh.r) ) ) by A1,Lm8 .=( tanh.p + (sinh.r)/(cosh.r) )/ ( 1 + ( (sinh.p)/(cosh.p) )*( (sinh.r)/(cosh.r) ) ) by Th17 .=( tanh.p + tanh.r )/ ( 1 + ( (sinh.p)/(cosh.p) )*( (sinh.r)/(cosh.r) ) ) by Th17 .=( tanh.p + tanh.r )/ ( 1 + ( tanh.p )*( (sinh.r)/(cosh.r) ) ) by Th17 .=( tanh.p + tanh.r )/( 1 + ( tanh.p )*( tanh.r ) ) by Th17; hence thesis; end; theorem Th18: (sinh.p)^2 = 1/2*(cosh.(2*p) - 1) & (cosh.p)^2 = 1/2*(cosh.(2*p) + 1) proof A1: (sinh.p)^2 = 1/2*(cosh.(2*p) - 1) proof (sinh.p)^2 =(sinh.p)*(sinh.p) by SQUARE_1:def 3 .=( (exp.(p) - exp.(-p))/2 )*(sinh.p) by Def1 .=( (exp.(p) - exp.(-p))/2 )*( (exp.(p) - exp.(-p))/2 ) by Def1 .=( (exp.(p) - exp.(-p))*(exp.(p) - exp.(-p)) )/(2*2) by XCMPLX_1:77 .=( (exp.(p))*(exp.(p))-(exp.(p))*(exp.(-p)) -(exp.(-p))*(exp.(p))+(exp.(-p))*(exp.(-p)) )/4 by XCMPLX_1:47 .=( (exp.(p+p))-(exp.(p))*(exp.(-p)) -(exp.(p))*(exp.(-p))+(exp.(-p))*(exp.(-p)) )/4 by Th12 .=( (exp.(p+p))-(exp.(p))*(exp.(-p)) -(exp.(p))*(exp.(-p))+(exp.(-p+ -p)) )/4 by Th12 .=( (exp.(p+p))-(exp.(p+ -p)) -(exp.(p))*(exp.(-p))+(exp.(-p+ -p)) )/4 by Th12 .=( (exp.(p+p))-(exp.(p+ -p)) -(exp.(p+ -p))+(exp.(-p+ -p)) )/4 by Th12 .=( ((exp.(p+p))+ -(exp.(p+ -p)) -(exp.(p+ -p)) )+(exp.(-p+ -p)) )/4 by XCMPLX_0:def 8 .=( ((exp.(p+p))+ -(exp.(p+ -p)) + -(exp.(p+ -p)) )+(exp.(-p+ -p)) )/4 by XCMPLX_0:def 8 .=( ( (exp.(p+p)) + (-(exp.(p+-p)) + -(exp.(p+-p)) ) ) +exp.(-p+-p) )/4 by XCMPLX_1:1 .=( ( (exp.(p+p)) + (-(exp.(0)) + -(exp.(p+-p)) ) ) +exp.(-p+-p) )/4 by XCMPLX_0:def 6 .=( ( (exp.(p+p)) + (-(exp.(0)) + -(exp.(0)) ) ) +exp.(-p+-p) )/4 by XCMPLX_0:def 6 .=( (exp.(p+p)) + 2*(-(exp.(0))) +exp.(-p+-p) )/4 by XCMPLX_1:11 .=( exp.(2*p) + 2*(-(exp.(0))) +exp.(-p+-p) )/4 by XCMPLX_1:11 .=( exp.(2*p) + 2*(-(exp.(0))) +exp.(-(p+p)) )/4 by XCMPLX_1:140 .=( exp.(2*p) + 2*(-1) +exp.(-(p+p)) )/4 by SIN_COS:56,def 27 .=( exp.(2*p) + 2*(-1) +exp.(-(2*p)) )/4 by XCMPLX_1:11 .=( exp.(2*p) +exp.(-(2*p))+ 2*(-1) )/4 by XCMPLX_1:1 .=( exp.(2*p) +exp.(-(2*p)) )/(2*2) + ((-1)*2)/(2*2) by XCMPLX_1:63 .=1/2*( ( exp.(2*p) +exp.(-(2*p)) )/2 ) + ((-1)*2)/(2*2) by XCMPLX_1:104 .=1/2*(cosh.(2*p))+ 1/2*((2*(-1))/2) by Def3 .=1/2*( cosh.(2*p)+ -1 ) by XCMPLX_1:8 .=1/2*( cosh.(2*p) - 1 ) by XCMPLX_0:def 8; hence thesis; end; (cosh.p)^2 = 1/2*(cosh.(2*p) + 1) proof (cosh.p)^2 =(cosh.p)*(cosh.p) by SQUARE_1:def 3 .=( (exp.(p) + exp.(-p))/2 )*(cosh.p) by Def3 .=( (exp.(p) + exp.(-p))/2 )*( (exp.(p) + exp.(-p))/2 ) by Def3 .=( (exp.(p) + exp.(-p))*(exp.(p) + exp.(-p)) )/(2*2) by XCMPLX_1:77 .=( (exp.(p))*(exp.(p))+(exp.(p))*(exp.(-p)) +(exp.(-p))*(exp.(p))+(exp.(-p))*(exp.(-p)) )/4 by XCMPLX_1:10 .=( (exp.(p+p))+(exp.(p))*(exp.(-p)) +(exp.(p))*(exp.(-p))+(exp.(-p))*(exp.(-p)) )/4 by Th12 .=( (exp.(p+p))+(exp.(p))*(exp.(-p)) +(exp.(p))*(exp.(-p))+(exp.(-p+ -p)) )/4 by Th12 .=( (exp.(p+p))+(exp.(p+ -p)) +(exp.(p))*(exp.(-p))+(exp.(-p+ -p)) )/4 by Th12 .=( (exp.(p+p))+(exp.(p+ -p)) +(exp.(p+ -p))+(exp.(-p+ -p)) )/4 by Th12 .=( ( (exp.(p+p)) + (exp.(p+-p) + exp.(p+-p) ) ) +exp.(-p+-p) )/4 by XCMPLX_1:1 .=( ( exp.(p+p) + (exp.(0) + exp.(p+-p) ) ) +exp.(-p+-p) )/4 by XCMPLX_0:def 6 .=( ( (exp.(p+p)) + (exp.(0) + exp.(0) ) ) +exp.(-p+-p) )/4 by XCMPLX_0:def 6 .=( exp.(p+p) + 2*(exp.(0)) +exp.(-p+-p) )/4 by XCMPLX_1:11 .=( exp.(2*p) + 2*(exp.(0)) +exp.(-p+-p) )/4 by XCMPLX_1:11 .=( exp.(2*p) + 2*(exp.(0)) +exp.(-(p+p)) )/4 by XCMPLX_1:140 .=( exp.(2*p) + 2*1 +exp.(-(p+p)) )/4 by SIN_COS:56,def 27 .=( exp.(2*p) + 2*1 +exp.(-(2*p)) )/4 by XCMPLX_1:11 .=( exp.(2*p) +exp.(-(2*p))+ 2*1 )/4 by XCMPLX_1:1 .=( exp.(2*p) +exp.(-(2*p)) )/(2*2) + (1*2)/(2*2) by XCMPLX_1:63 .=1/2*( ( exp.(2*p) +exp.(-(2*p)) )/2 ) + (1*2)/(2*2) by XCMPLX_1:104 .=1/2*(cosh.(2*p))+ 1/2*((2*1/2)) by Def3 .=1/2*( cosh.(2*p)+ 1 ) by XCMPLX_1:8; hence thesis; end; hence thesis by A1; end; Lm10: sinh.(2*p) = 2*(sinh.p)*(cosh.p) & cosh.(2*p) = 2*(cosh.p)^2 - 1 proof A1: sinh.(2*p) = 2*(sinh.p)*(cosh.p) proof 2*(sinh.p)*(cosh.p) =2*( (exp.(p) - exp.(-p))/2 )*(cosh.p) by Def1 .=2*( (exp.(p) - exp.(-p))/2 )*( (exp.(p) + exp.(-p))/2 ) by Def3 .=2*(( (exp.(p) - exp.(-p))/2 )*( (exp.(p) + exp.(-p))/2 )) by XCMPLX_1:4 .=2*(( (exp.(p) + exp.(-p))*(exp.(p) - exp.(-p)) )/(2*2)) by XCMPLX_1:77 .=( ( (exp.p)^2 - (exp.(-p))^2 )/4 )*2 by SQUARE_1:67 .=2/4*((exp.p)^2 - (exp.(-p))^2) by XCMPLX_1:76 .=2/4*((exp.p)*(exp.p) - (exp.(-p))^2) by SQUARE_1:def 3 .=2/4*((exp.p)*(exp.p) - (exp.(-p))*(exp.(-p))) by SQUARE_1:def 3 .=2/4*( exp.(p+p)- (exp.(-p))*(exp.(-p)) ) by Th12 .=2/4*(exp.(p+p)- exp.(-p+ -p)) by Th12 .=2/4*(exp.(2*p)- exp.(-p+ -p)) by XCMPLX_1:11 .=2/4*(exp.(2*p)- exp.(-(p+p))) by XCMPLX_1:140 .=1/2*( exp.(2*p)- exp.(-(2*p)) ) by XCMPLX_1:11 .=( ( exp.(2*p)- exp.(-(2*p)) )/2 )*1 by XCMPLX_1:76 .=sinh.(2*p) by Def1; hence thesis; end; cosh.(2*p) = 2*(cosh.p)^2 - 1 proof 2*(cosh.p)^2 = cosh.(2*p) + 1 proof 2*(cosh.p)^2 =2*( 1/2*(cosh.(2*p) + 1) ) by Th18 .=2*(1/2)*(cosh.(2*p) + 1) by XCMPLX_1:4 .=cosh.(2*p) + 1; hence thesis; end; hence cosh.(2*p) = 2*(cosh.p)^2 - 1 by XCMPLX_1:26; end; hence thesis by A1; end; theorem Th19: cosh.(-p) = cosh.p & sinh.(-p) = -sinh.p & tanh.(-p) = -tanh.p proof A1: cosh.(-p) = cosh.p proof cosh.(-p) = (exp.(-p) + exp.(-(-p)))/2 by Def3 .= cosh.p by Def3; hence thesis; end; A2: sinh.(-p) = -sinh.p proof sinh.(-p) = (exp.(-p) - exp.(-(-p)))/2 by Def1 .= (-(exp.(p) - exp.(-p)))/2 by XCMPLX_1:143 .= -(exp.(p) - exp.(-p))/2 by XCMPLX_1:188 .= -sinh.p by Def1; hence thesis; end; tanh.(-p) = -tanh.p proof tanh.(-p) = (-sinh.p)/(cosh.(-p)) by A2,Th17 .= -(sinh.p)/(cosh.p) by A1,XCMPLX_1:188 .= -tanh.p by Th17; hence thesis; end; hence thesis by A1,A2; end; Lm11: cosh.(p-r)=(cosh.p)*(cosh.r) - (sinh.p)*(sinh.r) proof cosh.(p-r)=cosh.(p+ -r) by XCMPLX_0:def 8 .=(cosh.p)*(cosh.-r) + (sinh.p)*(sinh.-r) by Lm6 .=(cosh.p)*(cosh.r) + (sinh.p)*(sinh.-r) by Th19 .=(cosh.p)*(cosh.r) + (sinh.p)*(-sinh.r) by Th19 .=(cosh.p)*(cosh.r) + (sinh.p)*((-1)*sinh.r) by XCMPLX_1:180 .=(cosh.p)*(cosh.r) + (-1)*((sinh.p)*(sinh.r)) by XCMPLX_1:4 .=(cosh.p)*(cosh.r) + -((sinh.p)*(sinh.r)) by XCMPLX_1:180 .=(cosh.p)*(cosh.r) - ((sinh.p)*(sinh.r)) by XCMPLX_0:def 8; hence thesis; end; theorem cosh.(p+r)=(cosh.p)*(cosh.r) + (sinh.p)*(sinh.r) & cosh.(p-r)=(cosh.p)*(cosh.r) - (sinh.p)*(sinh.r) by Lm6,Lm11; Lm12: sinh.(p-r)=(sinh.p)*(cosh.r) - (cosh.p)*(sinh.r) proof sinh.(p-r)=sinh.(p+-r) by XCMPLX_0:def 8 .=(sinh.p)*(cosh.-r) +(cosh.p)*(sinh.-r) by Lm7 .=(sinh.p)*(cosh.r) + (cosh.p)*(sinh.-r) by Th19 .=(sinh.p)*(cosh.r) + (cosh.p)*(-sinh.r) by Th19 .=(sinh.p)*(cosh.r) + (cosh.p)*((-1)*(sinh.r)) by XCMPLX_1:180 .=(sinh.p)*(cosh.r) + (-1)*((cosh.p)*(sinh.r)) by XCMPLX_1:4 .=(sinh.p)*(cosh.r) + -((cosh.p)*(sinh.r)) by XCMPLX_1:180 .=(sinh.p)*(cosh.r) -((cosh.p)*(sinh.r)) by XCMPLX_0:def 8; hence thesis; end; theorem sinh.(p+r)=(sinh.p)*(cosh.r) + (cosh.p)*(sinh.r) & sinh.(p-r)=(sinh.p)*(cosh.r) - (cosh.p)*(sinh.r) by Lm7,Lm12; Lm13: tanh.(p-r) = (tanh.p - tanh.r)/(1- (tanh.p)*(tanh.r)) proof tanh.(p-r)=tanh.(p+-r) by XCMPLX_0:def 8 .=(tanh.p + tanh.-r)/(1+ (tanh.p)*(tanh.-r)) by Lm9 .=(tanh.p + -tanh.r)/(1+ (tanh.p)*(tanh.-r)) by Th19 .=(tanh.p + -tanh.r)/(1+ (tanh.p)*(-tanh.r)) by Th19 .=(tanh.p - tanh.r)/(1+ (tanh.p)*(-tanh.r)) by XCMPLX_0:def 8 .=(tanh.p - tanh.r)/(1+ (tanh.p)*((-1)*tanh.r)) by XCMPLX_1:180 .=(tanh.p - tanh.r)/(1+ (-1)*(tanh.p*tanh.r)) by XCMPLX_1:4 .=(tanh.p - tanh.r)/(1+ -(tanh.p*tanh.r)) by XCMPLX_1:180 .=(tanh.p - tanh.r)/(1 -(tanh.p*tanh.r)) by XCMPLX_0:def 8; hence thesis; end; theorem tanh.(p+r) = (tanh.p + tanh.r)/(1+ (tanh.p)*(tanh.r)) & tanh.(p-r) = (tanh.p - tanh.r)/(1- (tanh.p)*(tanh.r)) by Lm9,Lm13; theorem sinh.(2*p) = 2*(sinh.p)*(cosh.p) & cosh.(2*p) = 2*(cosh.p)^2 - 1 & tanh.(2*p) = (2*tanh.p)/(1+(tanh.p)^2) proof tanh.(2*p)=tanh.(p+p) by XCMPLX_1:11 .=(tanh.p + tanh.p)/(1+ (tanh.p)*(tanh.p)) by Lm9 .=(2*tanh.p)/(1+ (tanh.p)*(tanh.p)) by XCMPLX_1:11 .=(2*tanh.p)/(1+ (tanh.p)^2) by SQUARE_1:def 3; hence thesis by Lm10; end; theorem Th24: (sinh.p)^2 - (sinh.q)^2 = (sinh.(p+q))*(sinh.(p-q)) & (sinh.(p+q))*(sinh.(p-q)) = (cosh.p)^2 - (cosh.q)^2 & (sinh.p)^2 - (sinh.q)^2 = (cosh.p)^2 - (cosh.q)^2 proof A1: (sinh.(p+q))*(sinh.(p-q)) = (sinh.p)^2*(cosh.q)^2 - (sinh.q)^2*(cosh.p)^2 proof (sinh.(p+q))*(sinh.(p-q)) =((sinh.p)*(cosh.q) + (cosh.p)*(sinh.q))*(sinh.(p-q)) by Lm7 .=((sinh.p)*(cosh.q) + (cosh.p)*(sinh.q))*(sinh.(p+(-q))) by XCMPLX_0:def 8 .=((sinh.p)*(cosh.q) + (cosh.p)*(sinh.q)) *((sinh.p)*(cosh.(-q)) + (cosh.p)*(sinh.(-q))) by Lm7 .=((sinh.p)*(cosh.q) + (cosh.p)*(sinh.q)) *((sinh.p)*(cosh.q) + (cosh.p)*(sinh.(-q))) by Th19 .=((sinh.p)*(cosh.q) + (cosh.p)*(sinh.q)) *((sinh.p)*(cosh.q) + (cosh.p)*(-sinh.q)) by Th19 .= ((sinh.p)*(cosh.q))*((sinh.p)*(cosh.q)) +((sinh.p)*(cosh.q))*((-sinh.q)*(cosh.p)) +((cosh.p)*(sinh.q))*((sinh.p)*(cosh.q)) +((cosh.p)*(sinh.q))*((-sinh.q)*(cosh.p)) by XCMPLX_1:10 .= ((sinh.p)*(cosh.q))^2 +((sinh.p)*(cosh.q))*((-sinh.q)*(cosh.p)) +((cosh.p)*(sinh.q))*((sinh.p)*(cosh.q)) +((cosh.p)*(sinh.q))*((-sinh.q)*(cosh.p)) by SQUARE_1:def 3 .= ((sinh.p)*(cosh.q))^2 +( ((sinh.p)*(cosh.q))*(( (-1)*(sinh.q) )*(cosh.p) ) ) +((cosh.p)*(sinh.q))*((sinh.p)*(cosh.q)) +((cosh.p)*(sinh.q))*((-sinh.q)*(cosh.p)) by XCMPLX_1:180 .= ((sinh.p)*(cosh.q))^2 +( (-1)*((sinh.q)*(cosh.p)) )*((sinh.p)*(cosh.q)) +((sinh.q)*(cosh.p))*((sinh.p)*(cosh.q)) +((cosh.p)*(sinh.q))*((-sinh.q)*(cosh.p)) by XCMPLX_1:4 .= ((sinh.p)*(cosh.q))^2 +(-1)*(((sinh.q)*(cosh.p))*((sinh.p)*(cosh.q))) +(((sinh.q)*(cosh.p))*((sinh.p)*(cosh.q))) +((cosh.p)*(sinh.q))*((-sinh.q)*(cosh.p)) by XCMPLX_1:4 .= ((sinh.p)*(cosh.q))^2 + -(((sinh.q)*(cosh.p))*((sinh.p)*(cosh.q))) +(((sinh.q)*(cosh.p))*((sinh.p)*(cosh.q))) +((cosh.p)*(sinh.q))*((-sinh.q)*(cosh.p)) by XCMPLX_1:180 .= ((sinh.p)*(cosh.q))^2 +( -(((sinh.q)*(cosh.p))*((sinh.p)*(cosh.q))) +(((sinh.q)*(cosh.p))*((sinh.p)*(cosh.q))) ) +((cosh.p)*(sinh.q))*((-sinh.q)*(cosh.p)) by XCMPLX_1:1 .= ((sinh.p)*(cosh.q))^2+0 +( ((cosh.p)*(sinh.q))*((-sinh.q)*(cosh.p)) ) by XCMPLX_0:def 6 .= ((sinh.p)*(cosh.q))^2 +(((-1)*(sinh.q))*(cosh.p))*((cosh.p)*(sinh.q)) by XCMPLX_1:180 .= ((sinh.p)*(cosh.q))^2 +((-1)*( (sinh.q)*(cosh.p) ))*((cosh.p)*(sinh.q)) by XCMPLX_1:4 .= ((sinh.p)*(cosh.q))^2 +(-1)*( ( (sinh.q)*(cosh.p) )*((cosh.p)*(sinh.q)) ) by XCMPLX_1:4 .= ((sinh.p)*(cosh.q))^2+(-1)*((sinh.q)*(cosh.p))^2 by SQUARE_1:def 3 .= ((sinh.p)*(cosh.q))^2+-((sinh.q)*(cosh.p))^2 by XCMPLX_1:180 .= ((sinh.p)*(cosh.q))^2-((sinh.q)*(cosh.p))^2 by XCMPLX_0:def 8 .= (sinh.p)^2*(cosh.q)^2-((sinh.q)*(cosh.p))^2 by SQUARE_1:68 .= (sinh.p)^2*(cosh.q)^2-(sinh.q)^2*(cosh.p)^2 by SQUARE_1:68; hence thesis; end; A2: (sinh.p)^2 - (sinh.q)^2 = (sinh.(p+q))*(sinh.(p-q)) proof (sinh.(p+q))*(sinh.(p-q)) =(sinh.p)^2*(cosh.q)^2 +0 -(sinh.q)^2*(cosh.p)^2 by A1 .=(sinh.p)^2*(cosh.q)^2 +( -((sinh.p)^2*(sinh.q)^2) + ((sinh.p)^2*(sinh.q)^2) ) -(sinh.q)^2*(cosh.p)^2 by XCMPLX_0:def 6 .=( (sinh.p)^2*(cosh.q)^2 + -((sinh.p)^2*(sinh.q)^2) ) + ((sinh.q)^2*(sinh.p)^2)-(sinh.q)^2*(cosh.p)^2 by XCMPLX_1:1 .=( (cosh.q)^2*(sinh.p)^2 -(sinh.p)^2*(sinh.q)^2 ) + ((sinh.q)^2*(sinh.p)^2)-(sinh.q)^2*(cosh.p)^2 by XCMPLX_0:def 8 .=(sinh.p)^2*( (cosh.q)^2 -(sinh.q)^2 ) + ((sinh.q)^2*(sinh.p)^2)-(sinh.q)^2*(cosh.p)^2 by XCMPLX_1:40 .=(sinh.p)^2*1 + (sinh.p)^2*(sinh.q)^2-(sinh.q)^2*(cosh.p)^2 by Th14 .=(sinh.p)^2 + (sinh.p)^2*(sinh.q)^2 + -(sinh.q)^2*(cosh.p)^2 by XCMPLX_0:def 8 .=(sinh.p)^2 + ( (sinh.p)^2*(sinh.q)^2+ -(sinh.q)^2*(cosh.p)^2 ) by XCMPLX_1:1 .=(sinh.p)^2 + ( (sinh.p)^2*(sinh.q)^2 -(sinh.q)^2*(cosh.p)^2 ) by XCMPLX_0:def 8 .=(sinh.p)^2 + (sinh.q)^2*((sinh.p)^2-(cosh.p)^2) by XCMPLX_1:40 .=(sinh.p)^2 + (sinh.q)^2*(-((cosh.p)^2-(sinh.p)^2)) by XCMPLX_1:143 .=(sinh.p)^2 + (sinh.q)^2*(-1) by Th14 .=(sinh.p)^2 + -(sinh.q)^2 by XCMPLX_1:180 .=(sinh.p)^2 - (sinh.q)^2 by XCMPLX_0:def 8; hence thesis; end; (sinh.(p+q))*(sinh.(p-q)) = (cosh.p)^2 - (cosh.q)^2 proof (sinh.(p+q))*(sinh.(p-q)) =(sinh.p)^2*(cosh.q)^2 +0 -(sinh.q)^2*(cosh.p)^2 by A1 .=(sinh.p)^2*(cosh.q)^2 +( -((cosh.p)^2*(cosh.q)^2) + ((cosh.p)^2*(cosh.q)^2) ) -(sinh.q)^2*(cosh.p)^2 by XCMPLX_0:def 6 .=((sinh.p)^2*(cosh.q)^2+ -((cosh.p)^2*(cosh.q)^2) ) +((cosh.p)^2*(cosh.q)^2)-(sinh.q)^2*(cosh.p)^2 by XCMPLX_1:1 .=((sinh.p)^2*(cosh.q)^2+ -((cosh.p)^2*(cosh.q)^2) ) +((cosh.p)^2*(cosh.q)^2)+ -(sinh.q)^2*(cosh.p)^2 by XCMPLX_0:def 8 .=((sinh.p)^2*(cosh.q)^2+ -((cosh.p)^2*(cosh.q)^2) ) +( ((cosh.p)^2*(cosh.q)^2)+ -(sinh.q)^2*(cosh.p)^2 ) by XCMPLX_1:1 .=((sinh.p)^2*(cosh.q)^2-((cosh.q)^2*(cosh.p)^2) ) +( ((cosh.p)^2*(cosh.q)^2)+ -(sinh.q)^2*(cosh.p)^2 ) by XCMPLX_0:def 8 .=(cosh.q)^2*( (sinh.p)^2-(cosh.p)^2 ) +( ((cosh.p)^2*(cosh.q)^2)+ -(sinh.q)^2*(cosh.p)^2 ) by XCMPLX_1:40 .=(cosh.q)^2*( -((cosh.p)^2-(sinh.p)^2) ) +( ((cosh.p)^2*(cosh.q)^2)+ -(sinh.q)^2*(cosh.p)^2 ) by XCMPLX_1:143 .=(cosh.q)^2*( -1 ) +( ((cosh.p)^2*(cosh.q)^2)+ -(sinh.q)^2*(cosh.p)^2 ) by Th14 .=(cosh.q)^2*( -1 ) +( (cosh.q)^2*(cosh.p)^2 -(cosh.p)^2*(sinh.q)^2 ) by XCMPLX_0:def 8 .=(cosh.q)^2*( -1 ) +( (cosh.p)^2*( (cosh.q)^2-(sinh.q)^2 ) ) by XCMPLX_1:40 .=(cosh.q)^2*( -1 )+ ((cosh.p)^2*1) by Th14 .=(cosh.p)^2 + -(cosh.q)^2 by XCMPLX_1:180 .=(cosh.p)^2 -(cosh.q)^2 by XCMPLX_0:def 8; hence thesis; end; hence thesis by A2; end; theorem Th25: (sinh.p)^2 + (cosh.q)^2 = (cosh.(p+q))*(cosh.(p-q)) & (cosh.(p+q))*(cosh.(p-q)) = (cosh.p)^2 + (sinh.q)^2 & (sinh.p)^2 + (cosh.q)^2 = (cosh.p)^2 + (sinh.q)^2 proof A1: (cosh.(p+q))*(cosh.(p-q)) = (cosh.p)^2*(cosh.q)^2- (sinh.p)^2*(sinh.q)^2 proof (cosh.(p+q))*(cosh.(p-q)) =( (cosh.p)*(cosh.q) + (sinh.p)*(sinh.q) )* (cosh.(p-q)) by Lm6 .=( (cosh.p)*(cosh.q) + (sinh.p)*(sinh.q) )* (cosh.(p + -q)) by XCMPLX_0:def 8 .=( ( (cosh.p)*(cosh.q) ) + ( (sinh.p)*(sinh.q) ) )* ( ( (cosh.p)*(cosh.-q) ) + ( (sinh.p)*(sinh.-q) ) ) by Lm6 .=( (cosh.p)*(cosh.q) )*( (cosh.p)*(cosh.-q) ) +( (cosh.p)*(cosh.q) )*( (sinh.p)*(sinh.-q) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.-q) ) +( (sinh.p)*(sinh.q) )*( (sinh.p)*(sinh.-q) ) by XCMPLX_1:10 .=( (cosh.p)*(cosh.q) )*( (cosh.p)*(cosh.q) ) +( (cosh.p)*(cosh.q) )*( (sinh.-q)*(sinh.p) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.-q) ) +( (sinh.p)*(sinh.q) )*( (sinh.-q)*(sinh.p) ) by Th19 .=( (cosh.p)*(cosh.q) )*( (cosh.p)*(cosh.q) ) +( (sinh.-q)*(sinh.p) )*( (cosh.p)*(cosh.q) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.q) ) +( (sinh.-q)*(sinh.p) )*( (sinh.p)*(sinh.q) ) by Th19 .=( (cosh.p)*(cosh.q) )^2 +( (sinh.-q)*(sinh.p) )*( (cosh.p)*(cosh.q) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.q) ) +( (sinh.-q)*(sinh.p) )*( (sinh.p)*(sinh.q) ) by SQUARE_1:def 3 .=( (cosh.p)*(cosh.q) )^2 +( (-sinh.q)*(sinh.p) )*( (cosh.p)*(cosh.q) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.q) ) +( (sinh.-q)*(sinh.p) )*( (sinh.p)*(sinh.q) ) by Th19 .=( (cosh.p)*(cosh.q) )^2 +( (-sinh.q)*(sinh.p) )*( (cosh.p)*(cosh.q) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.q) ) +( (-sinh.q)*(sinh.p) )*( (sinh.p)*(sinh.q) ) by Th19 .=( (cosh.p)*(cosh.q) )^2 +( (-1)*(sinh.q)*(sinh.p) )*( (cosh.p)*(cosh.q) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.q) ) +( (-sinh.q)*(sinh.p) )*( (sinh.p)*(sinh.q) ) by XCMPLX_1:180 .=( (cosh.p)*(cosh.q) )^2 +( (-1)*(sinh.q)*(sinh.p) )*( (cosh.p)*(cosh.q) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.q) ) +( (-1)*(sinh.q)*(sinh.p) )*( (sinh.p)*(sinh.q) ) by XCMPLX_1:180 .=( (cosh.p)*(cosh.q) )^2 +( (-1)*((sinh.q)*(sinh.p)) )*( (cosh.p)*(cosh.q) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.q) ) +( (-1)*(sinh.q)*(sinh.p) )*( (sinh.p)*(sinh.q) ) by XCMPLX_1:4 .=( (cosh.p)*(cosh.q) )^2 + (-1)*( ((sinh.q)*(sinh.p)) *( (cosh.p)*(cosh.q) ) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.q) ) +( (-1)*(sinh.q)*(sinh.p) )*( (sinh.p)*(sinh.q) ) by XCMPLX_1:4 .=( (cosh.p)*(cosh.q) )^2 + ( (-1)*( ((sinh.q)*(sinh.p)) *( (cosh.p)*(cosh.q) ) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.q) ) ) +( (-1)*(sinh.q)*(sinh.p) )*( (sinh.p)*(sinh.q) ) by XCMPLX_1:1 .=( (cosh.p)*(cosh.q) )^2 + ( -( ((sinh.q)*(sinh.p)) *( (cosh.p)*(cosh.q) ) ) +( (sinh.p)*(sinh.q) )*( (cosh.p)*(cosh.q) ) ) +( (-1)*(sinh.q)*(sinh.p) )*( (sinh.p)*(sinh.q) ) by XCMPLX_1:180 .=( (cosh.p)*(cosh.q) )^2 + 0 +( (-1)*(sinh.q)*(sinh.p) )*( (sinh.p)*(sinh.q) ) by XCMPLX_0:def 6 .=( (cosh.p)*(cosh.q) )^2 + 0 +(-1)*((sinh.q)*(sinh.p))*( (sinh.p)*(sinh.q) ) by XCMPLX_1:4 .=( (cosh.p)*(cosh.q) )^2 + 0 +(-1)*( ((sinh.q)*(sinh.p))*( (sinh.p)*(sinh.q) )) by XCMPLX_1:4 .=( (cosh.p)*(cosh.q) )^2 +(-1)*((sinh.q)*(sinh.p))^2 by SQUARE_1:def 3 .=(cosh.p)^2*(cosh.q)^2 +(-1)*((sinh.q)*(sinh.p))^2 by SQUARE_1:68 .=(cosh.p)^2*(cosh.q)^2 + -((sinh.q)*(sinh.p))^2 by XCMPLX_1:180 .=(cosh.p)^2*(cosh.q)^2 - ((sinh.q)*(sinh.p))^2 by XCMPLX_0:def 8 .=(cosh.p)^2*(cosh.q)^2 - (sinh.q)^2*(sinh.p)^2 by SQUARE_1:68; hence thesis; end; A2:(sinh.p)^2 + (cosh.q)^2 = (cosh.(p+q))*(cosh.(p-q)) proof (cosh.(p+q))*(cosh.(p-q)) =(cosh.p)^2*(cosh.q)^2 + 0 - (sinh.q)^2*(sinh.p)^2 by A1 .=(cosh.p)^2*(cosh.q)^2 +( -((sinh.p)^2*(cosh.q)^2) + ((sinh.p)^2*(cosh.q)^2) ) -(sinh.q)^2*(sinh.p)^2 by XCMPLX_0:def 6 .=( (cosh.p)^2*(cosh.q)^2 + -((sinh.p)^2*(cosh.q)^2) ) +((cosh.q)^2*(sinh.p)^2)-(sinh.p)^2*(sinh.q)^2 by XCMPLX_1:1 .=((cosh.p)^2*(cosh.q)^2-(cosh.q)^2*(sinh.p)^2) +(cosh.q)^2*(sinh.p)^2-(sinh.p)^2*(sinh.q)^2 by XCMPLX_0:def 8 .=(cosh.q)^2*((cosh.p)^2-(sinh.p)^2) +(cosh.q)^2*(sinh.p)^2-((sinh.p)^2*(sinh.q)^2) by XCMPLX_1:40 .=(cosh.q)^2*((cosh.p)^2-(sinh.p)^2) +(cosh.q)^2*(sinh.p)^2 + -((sinh.p)^2*(sinh.q)^2) by XCMPLX_0:def 8 .=(cosh.q)^2*((cosh.p)^2-(sinh.p)^2) +( (cosh.q)^2*(sinh.p)^2 + -(sinh.p)^2*(sinh.q)^2 ) by XCMPLX_1:1 .=(cosh.q)^2*1 +( (cosh.q)^2*(sinh.p)^2 + -(sinh.p)^2*(sinh.q)^2 ) by Th14 .=(cosh.q)^2*1 +( (cosh.q)^2*(sinh.p)^2-(sinh.p)^2*(sinh.q)^2 ) by XCMPLX_0:def 8 .=(cosh.q)^2+(sinh.p)^2*( (cosh.q)^2-(sinh.q)^2 ) by XCMPLX_1:40 .=(cosh.q)^2+(sinh.p)^2*1 by Th14 .=(cosh.q)^2+(sinh.p)^2; hence thesis; end; (cosh.(p+q))*(cosh.(p-q)) = (cosh.p)^2 + (sinh.q)^2 proof (cosh.(p+q))*(cosh.(p-q)) =(cosh.p)^2*(cosh.q)^2 + 0 - (sinh.q)^2*(sinh.p)^2 by A1 .=(cosh.q)^2*(cosh.p)^2 +( -((cosh.p)^2*(sinh.q)^2) + ((cosh.p)^2*(sinh.q)^2) ) -((sinh.q)^2*(sinh.p)^2) by XCMPLX_0:def 6 .=( (cosh.q)^2*(cosh.p)^2+ -((cosh.p)^2*(sinh.q)^2) ) + ((cosh.p)^2*(sinh.q)^2) -((sinh.q)^2*(sinh.p)^2) by XCMPLX_1:1 .=( (cosh.q)^2*(cosh.p)^2 -(cosh.p)^2*(sinh.q)^2 ) + ((cosh.p)^2*(sinh.q)^2) -((sinh.q)^2*(sinh.p)^2) by XCMPLX_0:def 8 .=(cosh.p)^2*( (cosh.q)^2-(sinh.q)^2 ) + ((cosh.p)^2*(sinh.q)^2) -((sinh.q)^2*(sinh.p)^2) by XCMPLX_1:40 .=(cosh.p)^2*( (cosh.q)^2-(sinh.q)^2 ) + ((cosh.p)^2*(sinh.q)^2) + -((sinh.q)^2*(sinh.p)^2) by XCMPLX_0:def 8 .=(cosh.p)^2*1 + ((cosh.p)^2*(sinh.q)^2) + -((sinh.q)^2*(sinh.p)^2) by Th14 .=(cosh.p)^2+(((cosh.p)^2*(sinh.q)^2) + -((sinh.q)^2*(sinh.p)^2)) by XCMPLX_1: 1 .=(cosh.p)^2+((cosh.p)^2*(sinh.q)^2-(sinh.q)^2*(sinh.p)^2) by XCMPLX_0:def 8 .=(cosh.p)^2+(sinh.q)^2*((cosh.p)^2-(sinh.p)^2) by XCMPLX_1:40 .=(cosh.p)^2+(sinh.q)^2*1 by Th14 .=(cosh.p)^2+(sinh.q)^2; hence thesis; end; hence thesis by A2; end; theorem sinh.p + sinh.r = 2*(sinh.(p/2+r/2))*(cosh.(p/2-r/2)) & sinh.p - sinh.r = 2*(sinh.(p/2-r/2))*(cosh.(p/2+r/2)) proof A1: 2*(sinh.(p/2+r/2))*(cosh.(p/2-r/2)) =2*((sinh.(p/2))*(cosh.(r/2))+(cosh.(p/2))*(sinh.(r/2))) *(cosh.(p/2-r/2)) by Lm7 .=2*((sinh.(p/2))*(cosh.(r/2))+(cosh.(p/2))*(sinh.(r/2))) *((cosh.(p/2))*(cosh.(r/2))-(sinh.(p/2))*(sinh.(r/2))) by Lm11 .=2*( (((sinh.(p/2))*(cosh.(r/2)))+((cosh.(p/2))*(sinh.(r/2)))) *(((cosh.(p/2))*(cosh.(r/2)))-((sinh.(p/2))*(sinh.(r/2)))) ) by XCMPLX_1:4 .=2*( ((sinh.(p/2))*(cosh.(r/2)))*((cosh.(r/2))*(cosh.(p/2))) -((cosh.(r/2))*(sinh.(p/2)))*((sinh.(p/2))*(sinh.(r/2))) +((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:45 .=2*( (sinh.(p/2))*((cosh.(r/2))*((cosh.(r/2))*(cosh.(p/2)))) -((cosh.(r/2))*(sinh.(p/2)))*((sinh.(p/2))*(sinh.(r/2))) +((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*(((cosh.(r/2))*(cosh.(r/2)))*(cosh.(p/2))) -((cosh.(r/2))*(sinh.(p/2)))*((sinh.(p/2))*(sinh.(r/2))) +((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -((cosh.(r/2))*(sinh.(p/2)))*((sinh.(p/2))*(sinh.(r/2))) +((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by SQUARE_1:def 3 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(r/2))*((sinh.(p/2))*((sinh.(p/2))*(sinh.(r/2)))) +((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(r/2))*(((sinh.(p/2))*(sinh.(p/2)))*(sinh.(r/2))) +((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) +((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by SQUARE_1:def 3 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) +(sinh.(r/2))*((cosh.(p/2))*((cosh.(p/2))*(cosh.(r/2)))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) +(sinh.(r/2))*(((cosh.(p/2))*(cosh.(p/2)))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) +(sinh.(r/2))*( (cosh.(r/2))*(cosh.(p/2))^2 ) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by SQUARE_1:def 3 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) +(sinh.(r/2))*( (cosh.(r/2))*(cosh.(p/2))^2 ) -(cosh.(p/2))*((sinh.(r/2))*((sinh.(r/2))*(sinh.(p/2)))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) +(sinh.(r/2))*( (cosh.(r/2))*(cosh.(p/2))^2 ) -(cosh.(p/2))*(((sinh.(r/2))*(sinh.(r/2)))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) +(sinh.(r/2))*( (cosh.(r/2))*(cosh.(p/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by SQUARE_1:def 3 .=2*( (sinh.(r/2))*( (cosh.(r/2))*(cosh.(p/2))^2 ) -(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) +(sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by XCMPLX_1:30 .=2*( ((sinh.(r/2))*(cosh.(r/2)))*(cosh.(p/2))^2 -(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) +(sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by XCMPLX_1:4 .=2*( ((sinh.(r/2))*(cosh.(r/2)))*(cosh.(p/2))^2 -((sinh.(r/2))*(cosh.(r/2)))*(sinh.(p/2))^2 +(sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by XCMPLX_1:4 .=2*( ((sinh.(r/2))*(cosh.(r/2)))*((cosh.(p/2))^2-(sinh.(p/2))^2) +(sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by XCMPLX_1:40 .=2*( ((sinh.(r/2))*(cosh.(r/2)))*1 +(sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by Th14 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) +(sinh.(r/2))*(cosh.(r/2)) ) by XCMPLX_1:29 .=2*( ((sinh.(p/2))*(cosh.(p/2)))*(cosh.(r/2))^2 -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) +(sinh.(r/2))*(cosh.(r/2)) ) by XCMPLX_1:4 .=2*( ((sinh.(p/2))*(cosh.(p/2)))*(cosh.(r/2))^2 -((cosh.(p/2))*(sinh.(p/2)))*(sinh.(r/2))^2 +(sinh.(r/2))*(cosh.(r/2)) ) by XCMPLX_1:4 .=2*( ((sinh.(p/2))*(cosh.(p/2)))*((cosh.(r/2))^2 -(sinh.(r/2))^2 ) +(sinh.(r/2))*(cosh.(r/2)) ) by XCMPLX_1:40 .=2*( ((sinh.(p/2))*(cosh.(p/2))*1)+(sinh.(r/2))*(cosh.(r/2)) ) by Th14 .=2*((sinh.(p/2))*(cosh.(p/2))) + 2*((sinh.(r/2))*(cosh.(r/2))) by XCMPLX_1:8 .=2*(sinh.(p/2))*(cosh.(p/2)) + 2*((sinh.(r/2))*(cosh.(r/2))) by XCMPLX_1:4 .=2*(sinh.(p/2))*(cosh.(p/2)) + 2*(sinh.(r/2))*(cosh.(r/2)) by XCMPLX_1:4 .=sinh.(2*(p/2)) + 2*(sinh.(r/2))*(cosh.(r/2)) by Lm10 .=sinh.(2*(p/2)) + sinh.(2*(r/2)) by Lm10 .=sinh.p + sinh.(2*(r/2)) by XCMPLX_1:88 .=sinh.p + sinh.r by XCMPLX_1:88; 2*(sinh.(p/2-r/2))*(cosh.(p/2+r/2)) =2*( (sinh.(p/2))*(cosh.(r/2))-(cosh.(p/2))*(sinh.(r/2)) ) *(cosh.(p/2+r/2)) by Lm12 .=2*((sinh.(p/2))*(cosh.(r/2))-(cosh.(p/2))*(sinh.(r/2))) *((cosh.(p/2))*(cosh.(r/2))+(sinh.(p/2))*(sinh.(r/2))) by Lm6 .=2*( (((sinh.(p/2))*(cosh.(r/2)))-((cosh.(p/2))*(sinh.(r/2)))) *(((cosh.(p/2))*(cosh.(r/2)))+((sinh.(p/2))*(sinh.(r/2)))) ) by XCMPLX_1:4 .=2*( ((sinh.(p/2))*(cosh.(r/2)))*((cosh.(r/2))*(cosh.(p/2))) +((cosh.(r/2))*(sinh.(p/2)))*((sinh.(p/2))*(sinh.(r/2))) -((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:46 .=2*( (sinh.(p/2))*((cosh.(r/2))*((cosh.(r/2))*(cosh.(p/2)))) +((cosh.(r/2))*(sinh.(p/2)))*((sinh.(p/2))*(sinh.(r/2))) -((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*(((cosh.(r/2))*(cosh.(r/2)))*(cosh.(p/2))) +((cosh.(r/2))*(sinh.(p/2)))*((sinh.(p/2))*(sinh.(r/2))) -((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) +((cosh.(r/2))*(sinh.(p/2)))*((sinh.(p/2))*(sinh.(r/2))) -((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by SQUARE_1:def 3 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) +(cosh.(r/2))*((sinh.(p/2))*((sinh.(p/2))*(sinh.(r/2)))) -((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) +(cosh.(r/2))*(((sinh.(p/2))*(sinh.(p/2)))*(sinh.(r/2))) -((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) +(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) -((sinh.(r/2))*(cosh.(p/2)))*((cosh.(p/2))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by SQUARE_1: def 3 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) +(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) -(sinh.(r/2))*((cosh.(p/2))*((cosh.(p/2))*(cosh.(r/2)))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) +(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) -(sinh.(r/2))*(((cosh.(p/2))*(cosh.(p/2)))*(cosh.(r/2))) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) +(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) -(sinh.(r/2))*( (cosh.(r/2))*(cosh.(p/2))^2 ) -((cosh.(p/2))*(sinh.(r/2)))*((sinh.(r/2))*(sinh.(p/2))) ) by SQUARE_1: def 3 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) +(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) -(sinh.(r/2))*( (cosh.(r/2))*(cosh.(p/2))^2 ) -(cosh.(p/2))*((sinh.(r/2))*((sinh.(r/2))*(sinh.(p/2)))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) +(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) -(sinh.(r/2))*( (cosh.(r/2))*(cosh.(p/2))^2 ) -(cosh.(p/2))*(((sinh.(r/2))*(sinh.(r/2)))*(sinh.(p/2))) ) by XCMPLX_1:4 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) +(cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) -(sinh.(r/2))*( (cosh.(r/2))*(cosh.(p/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by SQUARE_1:def 3 .=2*( (cosh.(r/2))*( (sinh.(r/2))*(sinh.(p/2))^2 ) -(sinh.(r/2))*( (cosh.(r/2))*(cosh.(p/2))^2 ) +(sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by XCMPLX_1:29 .=2*( ((cosh.(r/2))*(sinh.(r/2)))*(sinh.(p/2))^2 -(sinh.(r/2))*( (cosh.(r/2))*(cosh.(p/2))^2 ) +(sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by XCMPLX_1:4 .=2*( ((cosh.(r/2))*(sinh.(r/2)))*(sinh.(p/2))^2 -((sinh.(r/2))*(cosh.(r/2)))*(cosh.(p/2))^2 +(sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by XCMPLX_1:4 .=2*( ((cosh.(r/2))*(sinh.(r/2)))*((sinh.(p/2))^2-(cosh.(p/2))^2) +(sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by XCMPLX_1:40 .=2*( ((cosh.(r/2))*(sinh.(r/2)))*(-((cosh.(p/2))^2-(sinh.(p/2))^2)) +(sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by XCMPLX_1:143 .=2*( ((cosh.(r/2))*(sinh.(r/2)))*(-1) +(sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) ) by Th14 .=2*( (sinh.(p/2))*( (cosh.(p/2))*(cosh.(r/2))^2 ) -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) +(-1)*((cosh.(r/2))*(sinh.(r/2))) ) by XCMPLX_1:29 .=2*( ((sinh.(p/2))*(cosh.(p/2)))*(cosh.(r/2))^2 -(cosh.(p/2))*( (sinh.(p/2))*(sinh.(r/2))^2 ) +(-1)*((cosh.(r/2))*(sinh.(r/2))) ) by XCMPLX_1:4 .=2*( ((sinh.(p/2))*(cosh.(p/2)))*(cosh.(r/2))^2 -((cosh.(p/2))*(sinh.(p/2)))*(sinh.(r/2))^2 +(-1)*((cosh.(r/2))*(sinh.(r/2))) ) by XCMPLX_1:4 .=2*( ((sinh.(p/2))*(cosh.(p/2)))*((cosh.(r/2))^2-(sinh.(r/2))^2) +(-1)*((cosh.(r/2))*(sinh.(r/2))) ) by XCMPLX_1:40 .=2*( ((sinh.(p/2))*(cosh.(p/2)))*1 +(-1)*((cosh.(r/2))*(sinh.(r/2))) ) by Th14 .=2*( ((sinh.(p/2))*(cosh.(p/2))) +-((cosh.(r/2))*(sinh.(r/2))) ) by XCMPLX_1:180 .=2*( ((sinh.(p/2))*(cosh.(p/2)))-((cosh.(r/2))*(sinh.(r/2))) ) by XCMPLX_0: def 8 .= 2*((sinh.(p/2))*(cosh.(p/2)))-2*((cosh.(r/2))*(sinh.(r/2))) by XCMPLX_1:40 .= 2*(sinh.(p/2))*(cosh.(p/2))-2*((sinh.(r/2))*(cosh.(r/2))) by XCMPLX_1:4 .= 2*(sinh.(p/2))*(cosh.(p/2))-2*(sinh.(r/2))*(cosh.(r/2)) by XCMPLX_1:4 .=sinh.(2*(p/2)) - 2*(sinh.(r/2))*(cosh.(r/2)) by Lm10 .=sinh.(2*(p/2)) - sinh.(2*(r/2)) by Lm10 .=sinh.p - sinh.(2*(r/2)) by XCMPLX_1:88 .=sinh.p - sinh.r by XCMPLX_1:88; hence thesis by A1; end; theorem cosh.p + cosh.r = 2*(cosh.(p/2+r/2))*(cosh.(p/2-r/2)) & cosh.p - cosh.r = 2*(sinh.(p/2-r/2))*(sinh.(p/2+r/2)) proof A1:2*(cosh.(p/2+r/2))*(cosh.(p/2-r/2)) =2*((cosh.(p/2+r/2))*(cosh.(p/2-r/2))) by XCMPLX_1:4 .=2*( (sinh.(p/2))^2+(cosh.(r/2))^2 ) by Th25 .=2*( 1/2*(cosh.(2*(p/2)) - 1)+(cosh.(r/2))^2 ) by Th18 .=2*( 1/2*(cosh.(2*(p/2)) - 1)+1/2*(cosh.(2*(r/2)) + 1) ) by Th18 .=2*( 1/2*(cosh.p - 1)+1/2*(cosh.(2*(r/2)) + 1) ) by XCMPLX_1:88 .=2*( 1/2*(cosh.p - 1)+1/2*(cosh.r + 1) ) by XCMPLX_1:88 .=2*( 1/2*(cosh.p - 1) )+ 2*( 1/2*(cosh.r + 1) ) by XCMPLX_1:8 .=2*(1/2)*(cosh.p - 1)+ 2*( 1/2*(cosh.r + 1) ) by XCMPLX_1:4 .=2*(1/2)*(cosh.p - 1)+ 2*(1/2)*(cosh.r + 1) by XCMPLX_1:4 .=-1+(1+cosh.r)+cosh.p by XCMPLX_1:156 .=-1+1+cosh.r+cosh.p by XCMPLX_1:1 .=cosh.r+cosh.p; 2*(sinh.(p/2-r/2))*(sinh.(p/2+r/2)) =2*((sinh.(p/2-r/2))*(sinh.(p/2+r/2))) by XCMPLX_1:4 .=2*( (cosh.(p/2))^2 - (cosh.(r/2))^2 ) by Th24 .=2*( 1/2*(cosh.(2*(p/2)) + 1)-(cosh.(r/2))^2 ) by Th18 .=2*( 1/2*(cosh.(2*(p/2)) + 1)-1/2*(cosh.(2*(r/2)) + 1) ) by Th18 .=2*( 1/2*(cosh.p + 1)-1/2*(cosh.(2*(r/2)) + 1) ) by XCMPLX_1:88 .=2*( 1/2*(cosh.p + 1)-1/2*(cosh.r + 1) ) by XCMPLX_1:88 .=2*( 1/2*(cosh.p + 1) )- 2*( 1/2*(cosh.r + 1) ) by XCMPLX_1:40 .=2*(1/2)*(cosh.p + 1)- 2*( 1/2*(cosh.r + 1) ) by XCMPLX_1:4 .=2*(1/2)*(cosh.p + 1)- 2*(1/2)*(cosh.r + 1) by XCMPLX_1:4 .=-(cosh.r+1)+1+cosh.p by XCMPLX_1:155 .=-cosh.r-1+1+cosh.p by XCMPLX_1:161 .=-1+1-cosh.r+cosh.p by XCMPLX_1:166 .=-cosh.r+cosh.p by XCMPLX_1:150 .=cosh.p-cosh.r by XCMPLX_0:def 8; hence thesis by A1; end; theorem tanh.p + tanh.r = (sinh.(p+r))/((cosh.p)*(cosh.r)) & tanh.p - tanh.r = (sinh.(p-r))/((cosh.p)*(cosh.r)) proof A1:cosh.p<>0 & cosh.r<>0 by Th15; A2: (sinh.(p+r))/((cosh.p)*(cosh.r)) =( (sinh.p)*(cosh.r)+(cosh.p)*(sinh.r) )/((cosh.p)*(cosh.r)) by Lm7 .= ((sinh.p)*(cosh.r))/((cosh.p)*(cosh.r)) +((cosh.p)*(sinh.r))/((cosh.p)*(cosh.r)) by XCMPLX_1:63 .=(sinh.p)/(cosh.p)+((cosh.p)*(sinh.r))/((cosh.p)*(cosh.r)) by A1,XCMPLX_1:92 .=(sinh.p)/(cosh.p)+(sinh.r)/(cosh.r) by A1,XCMPLX_1:92 .=tanh.p+(sinh.r)/(cosh.r) by Th17 .=tanh.p+tanh.r by Th17; (sinh.(p-r))/((cosh.p)*(cosh.r)) =( (sinh.p)*(cosh.r)-(cosh.p)*(sinh.r) )/((cosh.p)*(cosh.r)) by Lm12 .= ((sinh.p)*(cosh.r))/((cosh.p)*(cosh.r)) -((cosh.p)*(sinh.r))/((cosh.p)*(cosh.r)) by XCMPLX_1:121 .=(sinh.p)/(cosh.p)-((cosh.p)*(sinh.r))/((cosh.p)*(cosh.r)) by A1,XCMPLX_1:92 .=(sinh.p)/(cosh.p)-(sinh.r)/(cosh.r) by A1,XCMPLX_1:92 .=tanh.p-(sinh.r)/(cosh.r) by Th17 .=tanh.p-tanh.r by Th17; hence thesis by A2; end; theorem (cosh.p + sinh.p) |^ n = cosh.(n*p) + sinh.(n*p) proof defpred X[Nat] means for p holds (cosh.p + sinh.p) |^ $1 = cosh.($1*p) + sinh.($1*p); A1: X[0] by Th15,Th16,NEWTON:9; A2:for n st X[n] holds X[n+1] proof let n such that A3: for p holds (cosh.p + sinh.p) |^ n = cosh.(n*p) + sinh.(n*p); for p holds (cosh.p + sinh.p) |^ (n+1) = cosh.((n+1)*p) + sinh.((n+1)*p) proof let p; A4: (cosh.(n*p))*(cosh.p)+(sinh.(n*p))*(sinh.p)=cosh.((n+1)*p) proof (cosh.(n*p))*(cosh.p)+(sinh.(n*p))*(sinh.p) =((exp.(n*p) + exp.(-n*p))/2)*(cosh.p) +(sinh.(n*p))*(sinh.p) by Def3 .=((exp.(n*p) + exp.(-n*p))/2)*((exp.p + exp.-p)/2) +(sinh.(n*p))*(sinh.p) by Def3 .=((exp.(n*p) + exp.(-n*p))/2)*((exp.p + exp.-p)/2) +((exp.(n*p) - exp.(-n*p))/2)*(sinh.p) by Def1 .=((exp.(n*p) + exp.(-n*p))/2)*((exp.p + exp.-p)/2) +((exp.(n*p) - exp.(-n*p))/2)*((exp.p - exp.-p)/2) by Def1 .=( (exp.(n*p))/2 + (exp.(-n*p))/2 )*( (exp.p + exp.-p)/2 ) +((exp.(n*p) - exp.(-n*p))/2)*((exp.p - exp.-p)/2) by XCMPLX_1:63 .=((exp.(n*p))/2 + (exp.(-n*p))/2)*((exp.p)/2 + (exp.-p)/2) +((exp.(n*p) - exp.(-n*p))/2)*((exp.p - exp.-p)/2) by XCMPLX_1:63 .=((exp.(n*p))/2 + (exp.(-n*p))/2)*((exp.p)/2 + (exp.-p)/2) +((exp.(n*p))/2 - (exp.(-n*p))/2)*((exp.p - exp.-p)/2) by XCMPLX_1:121 .=(((exp.(n*p))/2) + ((exp.(-n*p))/2))*(((exp.p)/2) + ((exp.-p)/2)) +(((exp.(n*p))/2) - ((exp.(-n*p))/2))*(((exp.p)/2) - ((exp.-p)/2)) by XCMPLX_1:121 .=( (exp.(n*p))/2 )*((exp.p)/2) + ((exp.(n*p))/2)*((exp.-p)/2) +( (exp.(-n*p))/2)*((exp.p)/2) + ((exp.(-n*p))/2)*((exp.-p)/2) +(((exp.(n*p))/2) - ((exp.(-n*p))/2))*(((exp.p)/2) - ((exp.-p)/2)) by XCMPLX_1:10 .=( (((exp.(n*p))/2 )*((exp.p)/2)) + (((exp.(n*p))/2)*((exp.-p)/2)) +(((exp.(-n*p))/2)*((exp.p)/2)) + (((exp.(-n*p))/2)*((exp.-p)/2)) ) +( (((exp.(n*p))/2 )*((exp.p)/2)) - (((exp.(n*p))/2)*((exp.-p)/2)) -( ((exp.(-n*p))/2)*((exp.p)/2)) + (((exp.(-n*p))/2)*((exp.-p)/2)) ) by XCMPLX_1:47 .=2*( ((exp.(n*p))/2 )*((exp.p)/2) ) +2*(((exp.(-n*p))/2)*((exp.-p)/2)) by Lm5 .=2*( ( (exp.(n*p))*(exp.p) )/(2*2) ) +2*(((exp.(-n*p))/2)*((exp.-p)/2)) by XCMPLX_1:77 .=2*( ( (exp.(n*p))*(exp.p) )/(2*2) ) +2*( ( (exp.(-n*p))*(exp.-p) )/(2*2) ) by XCMPLX_1:77 .=2*( exp.(p*n+p*1)/(2*2) ) +2*( ( (exp.(-n*p))*(exp.-p) )/(2*2) ) by Th12 .=2*( exp.(p*(n+1))/(2*2) ) +2*( ( (exp.(-n*p))*(exp.-p) )/(2*2) ) by XCMPLX_1:8 .=2*( exp.(p*(n+1))/(2*2) ) +2*( exp.(-n*p+-p)/(2*2) ) by Th12 .=2*( exp.(p*(n+1))/(2*2) ) +2*( exp.((-p)*n+(-p)*1)/(2*2) ) by XCMPLX_1:175 .=2*( exp.(p*(n+1))/4 ) +2*( exp.((-p)*(n+1))/4 ) by XCMPLX_1:8 .=exp.(p*(n+1))/(4/2)+2*( exp.((-p)*(n+1))/4 ) by XCMPLX_1:82 .=exp.(p*(n+1))/(4/2)+exp.((-p)*(n+1))/(4/2) by XCMPLX_1:82 .=exp.(p*(n+1))/2+exp.(-(p*(n+1)))/2 by XCMPLX_1:175 .=(exp.(p*(n+1))+exp.(-(p*(n+1))))/2 by XCMPLX_1:63 .=cosh.(p*(n+1)) by Def3; hence thesis; end; A5: (cosh.(n*p))*(sinh.p)+(sinh.(n*p))*(cosh.p)=sinh.((n+1)*p) proof (cosh.(n*p))*(sinh.p)+(sinh.(n*p))*(cosh.p) =((exp.(n*p) + exp.(-n*p))/2)*(sinh.p) +(sinh.(n*p))*(cosh.p) by Def3 .=((exp.(n*p) + exp.(-n*p))/2)*((exp.p - exp.-p)/2) +(sinh.(n*p))*(cosh.p) by Def1 .=((exp.(n*p) + exp.(-n*p))/2)*((exp.p - exp.-p)/2) +((exp.(n*p) - exp.(-n*p))/2)*(cosh.p) by Def1 .=((exp.(n*p) + exp.(-n*p))/2)*((exp.p - exp.-p)/2) +((exp.(n*p) - exp.(-n*p))/2)*((exp.p + exp.-p)/2) by Def3 .=((exp.(n*p))/2 + (exp.(-n*p))/2)*((exp.p - exp.-p)/2) +((exp.(n*p) - exp.(-n*p))/2)*((exp.p + exp.-p)/2) by XCMPLX_1:63 .=(((exp.(n*p))/2) + ((exp.(-n*p))/2))*(((exp.p)/2) - ((exp.-p)/2)) +((exp.(n*p) - exp.(-n*p))/2)*((exp.p + exp.-p)/2) by XCMPLX_1:121 .=((exp.(n*p))/2)*((exp.p)/2) - ((exp.(n*p))/2)*((exp.-p)/2) +((exp.(-n*p))/2)*((exp.p)/2) - ((exp.(-n*p))/2)*((exp.-p)/2) +((exp.(n*p) - exp.(-n*p))/2)*((exp.p + exp.-p)/2) by XCMPLX_1:45 .=((exp.(n*p))/2)*((exp.p)/2) - ((exp.(n*p))/2)*((exp.-p)/2) +((exp.(-n*p))/2)*((exp.p)/2) - ((exp.(-n*p))/2)*((exp.-p)/2) +((exp.(n*p))/2 - (exp.(-n*p))/2)*((exp.p + exp.-p)/2) by XCMPLX_1:121 .=((exp.(n*p))/2)*((exp.p)/2) - ((exp.(n*p))/2)*((exp.-p)/2) +((exp.(-n*p))/2)*((exp.p)/2) - ((exp.(-n*p))/2)*((exp.-p)/2) +(((exp.(n*p))/2) - ((exp.(-n*p))/2))*(((exp.p)/2) + ((exp.-p)/2)) by XCMPLX_1:63 .=( (((exp.(n*p))/2)*((exp.p)/2)) - (((exp.(n*p))/2)*((exp.-p)/2)) +(((exp.(-n*p))/2)*((exp.p)/2)) - (((exp.(-n*p))/2)*((exp.-p)/2)) ) +( (((exp.(n*p))/2)*((exp.p)/2)) + (((exp.(n*p))/2)*((exp.-p)/2)) -(((exp.(-n*p))/2)*((exp.p)/2)) - (((exp.(-n*p))/2)*((exp.-p)/2)) ) by XCMPLX_1:46 .=2*(((exp.(n*p))/2)*((exp.p)/2)) +2*(-(((exp.(-n*p))/2)*((exp.-p)/2))) by Lm5 .=2*( ( (exp.(n*p))*(exp.p) )/(2*2) ) +2*( -( ((exp.(-n*p))/2)*((exp.-p)/2) )) by XCMPLX_1:77 .=2*(( (exp.(n*p))*(exp.p) )/4 ) +2*( -( ((exp.(-n*p))*(exp.-p))/(2*2) )) by XCMPLX_1:77 .=2*( exp.(n*p+p)/4 ) +2*( -( ((exp.(-n*p))*(exp.-p))/4 )) by Th12 .=2*( exp.(n*p+p)/4 ) +2*( -( (exp.(-n*p+-p))/4 ) ) by Th12 .=2*( exp.(n*p+p*1)/4 ) +-(2*( (exp.(-n*p+-p))/4 ) ) by XCMPLX_1:175 .=2*( exp.(p*(n+1))/4 ) +-(2*( (exp.(-n*p+-p))/4 ) ) by XCMPLX_1:8 .=2*( exp.(p*(n+1))/4 ) +-(2*( ( exp.((-p)*n+(-p)*1)) /4 ) ) by XCMPLX_1:175 .=2*( exp.(p*(n+1))/4 ) +-(2*( ( exp.((-p)*(n+1)) ) /4 ) ) by XCMPLX_1:8 .=2*( exp.(p*(n+1))/4 ) +-( exp.((-p)*(n+1))/(4/2) ) by XCMPLX_1:82 .=2*( exp.(p*(n+1))/4 ) +-( exp.(-(p*(n+1)))/(4/2) ) by XCMPLX_1:175 .=exp.(p*(n+1))/(4/2) +-( exp.(-(p*(n+1)))/(4/2) ) by XCMPLX_1:82 .=exp.(p*(n+1))/(4/2) -( exp.(-(p*(n+1)))/(4/2) ) by XCMPLX_0:def 8 .=( exp.(p*(n+1))- exp.(-(p*(n+1))) )/2 by XCMPLX_1:121 .=sinh.(p*(n+1)) by Def1; hence thesis; end; (cosh.p + sinh.p) |^ (n+1) =(cosh.p + sinh.p) |^ n * (cosh.p + sinh.p) by NEWTON:11 .=(cosh.(n*p) + sinh.(n*p)) * (cosh.p + sinh.p) by A3 .=(cosh.(n*p))*(cosh.p)+(cosh.(n*p))*(sinh.p) +(sinh.(n*p))*(cosh.p)+(sinh.(n*p))*(sinh.p) by XCMPLX_1:10 .=(cosh.(n*p))*(cosh.p)+( (cosh.(n*p))*(sinh.p) +(sinh.(n*p))*(cosh.p) )+(sinh.(n*p))*(sinh.p) by XCMPLX_1:1 .=sinh.((n+1)*p)+cosh.((n+1)*p) by A4,A5,XCMPLX_1:1; hence thesis; end; hence thesis; end; for n holds X[n] from Ind(A1,A2); hence thesis; end; definition cluster sinh -> total; coherence proof dom sinh=REAL by Def1; hence thesis by PARTFUN1:def 4; end; cluster cosh -> total; coherence proof dom cosh=REAL by Def3; hence thesis by PARTFUN1:def 4; end; cluster tanh -> total; coherence proof dom tanh=REAL by Def5; hence thesis by PARTFUN1:def 4; end; end; theorem Th30: dom sinh=REAL & dom cosh=REAL & dom tanh=REAL by Def1,Def3,Def5; Lm14:for d being real number holds compreal.d=(-1)*d proof let d be real number; d is Real by XREAL_0:def 1; hence compreal.d= -d by VECTSP_1:def 5 .= (-1)*d by XCMPLX_1:180; end; Lm15: dom(compreal)=REAL & rng(compreal)c=REAL by FUNCT_2:def 1,RELSET_1:12; Lm16: for f being PartFunc of REAL,REAL st f = compreal holds for p holds f is_differentiable_in p & diff(f,p) = -1 proof let f be PartFunc of REAL,REAL such that A1:f = compreal; let p; defpred X[set] means $1 in REAL; deffunc U(Real) = -$1; consider f1 being PartFunc of REAL,REAL such that A2:for p be Element of REAL holds p in dom f1 iff X[p] and A3:for p be Element of REAL st p in dom f1 holds f1/.p=U(p) from LambdaPFD; A4:f1 is LINEAR proof dom f1 = REAL proof A5: dom f1 c=REAL by RELSET_1:12; for x be set st x in REAL holds x in dom f1 by A2; then REAL c=dom f1 by TARSKI:def 3; hence dom f1=REAL by A5,XBOOLE_0:def 10; end; then A6:f1 is total by PARTFUN1:def 4; A7: for p be Element of REAL holds f1.p = - p proof let p be Element of REAL; A8: p in dom f1 by A2; then f1/.p = -p by A3; hence f1.p = -p by A8,FINSEQ_4:def 4; end; for p be Real holds f1.p=(-1)*p proof let p be Real; f1.p = -p by A7; hence f1.p = (-1)*p by XCMPLX_1:180; end; hence f1 is LINEAR by A6,FDIFF_1:def 4; end; defpred X[set] means $1 in REAL; deffunc U(Real) = 0; consider f2 being PartFunc of REAL,REAL such that A9:for p be Element of REAL holds p in dom f2 iff X[p] and A10:for p be Element of REAL st p in dom f2 holds f2/.p= U(p) from LambdaPFD; A11:f2 is REST proof A12:dom f2 = REAL proof A13: dom f2 c=REAL by RELSET_1:12; for x be set st x in REAL holds x in dom f2 by A9; then REAL c=dom f2 by TARSKI:def 3; hence dom f2=REAL by A13,XBOOLE_0:def 10; end; then A14:f2 is total by PARTFUN1:def 4; A15: for d be Element of REAL holds f2.d = 0 proof let d be Element of REAL; A16: d in dom f2 by A9; then f2/.d = 0 by A10; hence f2.d = 0 by A16,FINSEQ_4:def 4; end; f2 is REST-like PartFunc of REAL,REAL proof for hy1 be convergent_to_0 Real_Sequence holds (hy1")(#)(f2*hy1) is convergent & lim ((hy1")(#)(f2*hy1)) = 0 proof let hy1 be convergent_to_0 Real_Sequence; A17: for n holds ((hy1")(#)(f2*hy1)).n=0 proof let n; A18: ((hy1")(#)(f2*hy1)).n = (hy1".n)*((f2*hy1).n) by SEQ_1:12 .= (hy1.n)"*((f2*hy1).n) by SEQ_1:def 8; rng hy1 c= dom f2 by A12; then ((hy1")(#)(f2*hy1)).n =(hy1.n)"*(f2.(hy1.n)) by A18,RFUNCT_2:21 .=(hy1.n)"*(0) by A15 .= 0; hence thesis; end; then A19:(hy1")(#)(f2*hy1) is constant by SEQM_3:def 6; for n holds lim ((hy1")(#)(f2*hy1)) = 0 proof let n; lim ((hy1")(#)(f2*hy1)) =((hy1")(#)(f2*hy1)).n by A19,SEQ_4:41 .=0 by A17; hence lim ((hy1")(#)(f2*hy1)) = 0; end; hence thesis by A19,SEQ_4:39; end; hence thesis by A14,FDIFF_1:def 3; end; hence thesis; end; A20: ex N being Neighbourhood of p st N c= dom compreal & for r be Real st r in N holds compreal.r - compreal.p = f1.(r-p) + f2.(r-p) proof A21: for r st r in ].p-1,p+1 .[ holds compreal.r - compreal.p = f1.(r-p) + f2.(r-p) proof let r; A22: for p be real number holds f1.p = - p proof let p be real number; A23: p is Real by XREAL_0:def 1; then A24: p in dom f1 by A2; then f1/.p = -p by A3,A23; hence f1.p = -p by A24,FINSEQ_4:def 4; end; A25: for d be real number holds f2.d = 0 proof let d be real number; A26: d is Real by XREAL_0:def 1; then A27: d in dom f2 by A9; then f2/.d = 0 by A10,A26; hence f2.d = 0 by A27,FINSEQ_4:def 4; end; compreal.r-compreal.p =(-1)*r - compreal.p by Lm14 .=(-1)*r -(-1)*p + 0 by Lm14 .=(-1)*r -(-1)*p + f2.(r-p) by A25 .=(-1)*(r-p) + f2.(r-p) by XCMPLX_1:40 .=-(r-p) + f2.(r-p) by XCMPLX_1:180 .=f1.(r-p) + f2.(r-p) by A22; hence thesis; end; take ].p-1,p+1 .[; thus thesis by A21,Lm15,RCOMP_1:def 7; end; then A28:f is_differentiable_in p by A1,A4,A11,FDIFF_1:def 5; A29: for p be Element of REAL holds f1.p = - p proof let p be Element of REAL; A30: p in dom f1 by A2; then f1/.p = -p by A3; hence f1.p = -p by A30,FINSEQ_4:def 4; end; diff(f,p) = f1.1 by A1,A4,A11,A20,A28,FDIFF_1:def 6 .=-1 by A29; hence thesis by A1,A4,A11,A20,FDIFF_1:def 5; end; Lm17: for f being PartFunc of REAL,REAL st f = compreal holds exp*f is_differentiable_in p & diff(exp*f,p) = (-1)*exp.(f.p) proof let f be PartFunc of REAL,REAL such that A1: f = compreal; A2: exp is_differentiable_in f.p by SIN_COS:70; A3: f is_differentiable_in p by A1,Lm16; then diff(exp*f,p) =diff(exp,f.p)*diff(f,p) by A2,FDIFF_2:13 .=diff(exp,f.p)*(-1) by A1,Lm16 .=exp.(f.p)*(-1) by SIN_COS:70; hence thesis by A2,A3,FDIFF_2:13; end; Lm18: for f being PartFunc of REAL,REAL st f = compreal holds exp.((-1)*p)= (exp*f).p proof let f be PartFunc of REAL,REAL; assume A1:f = compreal; then exp.((-1)*p) =exp.(f.p) by Lm14 .=(exp*f).p by A1,FUNCT_2:70; hence thesis; end; Lm19: for f being PartFunc of REAL,REAL st f = compreal holds (exp-(exp*f)) is_differentiable_in p & (exp+(exp*f)) is_differentiable_in p & diff(exp-(exp*f),p)=exp.p+exp.(-p) & diff(exp+(exp*f),p)=exp.p-exp.(-p) proof let f be PartFunc of REAL,REAL; assume A1: f = compreal; then A2: exp is_differentiable_in p & exp*f is_differentiable_in p by Lm17,SIN_COS:70; then A3: diff(exp-(exp*f),p) =diff(exp,p)-diff((exp*f),p) by FDIFF_1:22 .=exp.p-diff((exp*f),p) by SIN_COS:70 .=exp.p- (-1)*exp.(f.p) by A1,Lm17 .=exp.p- (-1)*exp.((-1)*p) by A1,Lm14 .=exp.p- (-1)*exp.(-p) by XCMPLX_1:180 .=exp.p- -exp.(-p) by XCMPLX_1:180 .=exp.p+exp.(-p) by XCMPLX_1:151; diff(exp+(exp*f),p) =diff(exp,p)+diff((exp*f),p) by A2,FDIFF_1:21 .=exp.p+diff((exp*f),p) by SIN_COS:70 .=exp.p+ (-1)*exp.(f.p) by A1,Lm17 .=exp.p+ (-1)*exp.((-1)*p) by A1,Lm14 .=exp.p+ (-1)*exp.(-p) by XCMPLX_1:180 .=exp.p+ -exp.(-p) by XCMPLX_1:180 .=exp.p-exp.(-p) by XCMPLX_0:def 8; hence thesis by A2,A3,FDIFF_1:21,22; end; Lm20: for f being PartFunc of REAL,REAL st f = compreal holds (1/2)(#)(exp-exp*f) is_differentiable_in p & diff(((1/2)(#)(exp-exp*f)),p) = (1/2)*diff((exp-(exp*f)),p) proof let f be PartFunc of REAL,REAL; assume f = compreal; then (exp-exp*f) is_differentiable_in p by Lm19; hence thesis by FDIFF_1:23; end; Lm21: for ff being PartFunc of REAL,REAL st ff = compreal holds sinh.p=((1/2)(#)(exp-exp*ff)).p proof let ff be PartFunc of REAL,REAL such that A1: ff = compreal; reconsider p as Real; A2: dom (exp - exp*ff) = dom exp /\ dom (exp*ff) & for p be Real st p in dom (exp - exp*ff) holds exp.(p) - (exp*ff).p = (exp - exp*ff).p by SEQ_1:def 4; A3:dom (exp - exp*ff) = REAL proof dom (exp*ff) = REAL by A1,Lm15,RELAT_1:46,SIN_COS:51; hence thesis by A2,SIN_COS:51; end; then A4:dom((1/2)(#)(exp-exp*ff))=REAL by SEQ_1:def 6; sinh.p =(exp.(p) - exp.(-p))/2 by Def1 .=(1/2)*(exp.(p) - exp.(-p)) by XCMPLX_1:100 .=(1/2)*(exp.(p) - exp.((-1)*p)) by XCMPLX_1:180 .=(1/2)*(exp.(p) - (exp*ff).p) by A1,Lm18 .=(1/2)*((exp - exp*ff).p) by A3,SEQ_1:def 4 .=((1/2)(#)(exp-exp*ff)).p by A4,SEQ_1:def 6; hence thesis; end; Lm22: for ff being PartFunc of REAL,REAL st ff = compreal holds sinh = (1/2)(#)(exp-exp*ff) proof let ff be PartFunc of REAL,REAL such that A1: ff = compreal; A2: dom (exp - exp*ff) = dom exp /\ dom (exp*ff) & for p be Real st p in dom (exp - exp*ff) holds exp.(p) - (exp*ff).p = (exp - exp*ff).p by SEQ_1:def 4; dom (exp - exp*ff) = REAL proof dom (exp*ff) = REAL by A1,Lm15,RELAT_1:46,SIN_COS:51; hence thesis by A2,SIN_COS:51; end; then A3:REAL=dom(sinh) & REAL=dom((1/2)(#)(exp-exp*ff)) by Def1,SEQ_1:def 6; for p being Element of REAL st p in REAL holds sinh.p=((1/2)(#)(exp-exp*ff)).p by A1,Lm21; hence sinh=(1/2)(#)(exp-exp*ff) by A3,PARTFUN1:34; thus thesis; end; theorem Th31: sinh is_differentiable_in p & diff(sinh,p)=cosh.p proof reconsider ff = compreal as PartFunc of REAL,REAL; A1:sinh = (1/2)(#)(exp-exp*ff) by Lm22; diff(sinh,p) =diff( ((1/2)(#)(exp-exp*ff)),p ) by Lm22 .=(1/2)*diff((exp-(exp*ff)),p) by Lm20 .=(1/2)*( exp.p+exp.(-p) ) by Lm19 .=( exp.p+exp.(-p) )/2 by XCMPLX_1:100 .=cosh.p by Def3; hence thesis by A1,Lm20; end; Lm23: for ff being PartFunc of REAL,REAL st ff = compreal holds (1/2)(#)(exp+exp*ff) is_differentiable_in p & diff(((1/2)(#)(exp+exp*ff)),p) = (1/2)*diff((exp+(exp*ff)),p) proof let ff be PartFunc of REAL,REAL; assume ff = compreal; then (exp+exp*ff) is_differentiable_in p by Lm19; hence thesis by FDIFF_1:23; end; Lm24: for ff being PartFunc of REAL,REAL st ff = compreal holds cosh.p=((1/2)(#)(exp+exp*ff)).p proof let ff be PartFunc of REAL,REAL such that A1: ff = compreal; reconsider p as Real; A2: dom (exp + exp*ff) = dom exp /\ dom (exp*ff) & for p be Real st p in dom (exp + exp*ff) holds exp.(p) + (exp*ff).p = (exp + exp*ff).p by SEQ_1:def 3; A3:dom (exp + exp*ff) = REAL proof dom (exp*ff) = REAL by A1,Lm15,RELAT_1:46,SIN_COS:51; hence thesis by A2,SIN_COS:51; end; then A4:dom((1/2)(#)(exp+exp*ff))=REAL by SEQ_1:def 6; cosh.p =(exp.(p) + exp.(-p))/2 by Def3 .=(1/2)*(exp.(p) + exp.(-p)) by XCMPLX_1:100 .=(1/2)*(exp.(p) + exp.((-1)*p)) by XCMPLX_1:180 .=(1/2)*(exp.(p) + (exp*ff).p) by A1,Lm18 .=(1/2)*((exp + exp*ff).p) by A3,SEQ_1:def 3 .=((1/2)(#)(exp+exp*ff)).p by A4,SEQ_1:def 6; hence thesis; end; Lm25: for ff being PartFunc of REAL,REAL st ff = compreal holds cosh = (1/2)(#)(exp+exp*ff) proof let ff be PartFunc of REAL,REAL such that A1: ff = compreal; A2: dom (exp + exp*ff) = dom exp /\ dom (exp*ff) & for p be Real st p in dom (exp + exp*ff) holds exp.(p) + (exp*ff).p = (exp + exp*ff).p by SEQ_1:def 3; dom (exp + exp*ff) = REAL proof dom (exp*ff) = REAL by A1,Lm15,RELAT_1:46,SIN_COS:51; hence thesis by A2,SIN_COS:51; end; then A3:REAL=dom(cosh) & REAL=dom((1/2)(#)(exp+exp*ff)) by Def3,SEQ_1:def 6; for p being Element of REAL st p in REAL holds cosh.p=((1/2)(#)(exp+exp*ff)).p by A1,Lm24; hence cosh=(1/2)(#)(exp+exp*ff) by A3,PARTFUN1:34; end; theorem Th32: cosh is_differentiable_in p & diff(cosh,p)=sinh.p proof reconsider ff = compreal as PartFunc of REAL,REAL; A1: cosh = (1/2)(#)(exp+exp*ff) by Lm25; diff(cosh,p) =diff( ((1/2)(#)(exp+exp*ff)),p ) by Lm25 .=(1/2)*diff((exp+(exp*ff)),p) by Lm23 .=(1/2)*( exp.p-exp.(-p) ) by Lm19 .=( exp.p-exp.(-p) )/2 by XCMPLX_1:100 .=sinh.p by Def1; hence thesis by A1,Lm23; end; Lm26: sinh/cosh is_differentiable_in p & diff(sinh/cosh,p) = 1/(cosh.p)^2 proof A1:cosh.p<>0 by Th15; A2:sinh is_differentiable_in p by Th31; A3:cosh is_differentiable_in p by Th32; then diff(sinh/cosh,p) =(diff(sinh,p) * cosh.p - diff(cosh,p)*sinh.p)/(cosh.p)^2 by A1,A2,FDIFF_2:14 .=((cosh.p)*(cosh.p) - diff(cosh,p) * sinh.p)/(cosh.p)^2 by Th31 .=( (cosh.p)*(cosh.p) - (sinh.p)*(sinh.p) )/(cosh.p)^2 by Th32 .=( (cosh.p)^2 - (sinh.p)*(sinh.p) )/(cosh.p)^2 by SQUARE_1:def 3 .=( (cosh.p)^2 - (sinh.p)^2 )/(cosh.p)^2 by SQUARE_1:def 3 .=1/(cosh.p)^2 by Th14; hence thesis by A1,A2,A3,FDIFF_2:14; end; Lm27: tanh=sinh/cosh proof A1: dom (sinh/cosh) = dom sinh /\ (dom cosh \ cosh"{0}) & for p be Real st p in dom (sinh/cosh) holds (sinh/cosh).p = sinh.p*(cosh.p)" by RFUNCT_1:def 4; not(0 in rng(cosh)) proof assume 0 in rng(cosh); then consider p be Real such that A2:p in dom(cosh) & 0=cosh.p by PARTFUN1:26; thus contradiction by A2,Th15; end; then A3: cosh"{0}={} by FUNCT_1:142; for p being Element of REAL st p in REAL holds tanh.p=(sinh/cosh).p proof let p; (sinh/cosh).p =sinh.p*(cosh.p)" by A1,A3,Th30 .=(sinh.p)/(cosh.p) by XCMPLX_0:def 9 .=tanh.p by Th17; hence thesis; end; hence tanh=sinh/cosh by A1,A3,Th30,PARTFUN1:34; thus thesis; end; theorem tanh is_differentiable_in p & diff(tanh,p)=1/(cosh.p)^2 by Lm26,Lm27; theorem Th34: sinh is_differentiable_on REAL & diff(sinh,p)=cosh.p proof REAL is open Subset of REAL & REAL c= dom(sinh) & for p be Real st p in REAL holds sinh is_differentiable_in p by Def1,Th31,FCONT_3:4,SUBSET_1:def 4; hence thesis by Th31,FDIFF_1:16; end; theorem Th35: cosh is_differentiable_on REAL & diff(cosh,p)=sinh.p proof REAL is open Subset of REAL & REAL c=dom cosh & for r be Real st r in REAL holds cosh is_differentiable_in r by Def3,Th32,FCONT_3:4,SUBSET_1:def 4; hence thesis by Th32,FDIFF_1:16; end; theorem Th36: tanh is_differentiable_on REAL & diff(tanh,p)=1/(cosh.p)^2 proof REAL is open Subset of REAL & for p be Real st p in REAL holds tanh is_differentiable_in p by Lm26,Lm27,FCONT_3:4,SUBSET_1:def 4; hence thesis by Lm26,Lm27,Th30,FDIFF_1:16; end; Lm28: exp.p + exp.-p >= 2 proof A1:exp.p >= 0 by SIN_COS:59; A2: exp.-p>= 0 by SIN_COS:59; 2*sqrt((exp.p) * (exp.-p)) =2*sqrt(exp.(p+-p)) by Th12 .=2*sqrt(exp.0) by XCMPLX_0:def 6 .=2*1 by SIN_COS:56,def 27,SQUARE_1:83; hence thesis by A1,A2,Th1; end; theorem cosh.p >= 1 proof (exp.p + exp.-p)>=2 by Lm28; then (exp.p + exp.-p)/2 >= 2/2 by REAL_1:73; hence thesis by Def3; end; theorem sinh is_continuous_in p proof sinh is_differentiable_in p by Th31; hence thesis by FDIFF_1:32; end; theorem cosh is_continuous_in p proof cosh is_differentiable_in p by Th32; hence thesis by FDIFF_1:32; end; theorem tanh is_continuous_in p proof tanh is_differentiable_in p by Lm26,Lm27; hence thesis by FDIFF_1:32; end; theorem sinh is_continuous_on REAL by Th34,FDIFF_1:33; theorem cosh is_continuous_on REAL by Th35,FDIFF_1:33; theorem tanh is_continuous_on REAL by Th36,FDIFF_1:33; theorem tanh.p<1 & tanh.p>-1 proof thus tanh.p<1 proof assume tanh.p>=1; then A1: (exp.p - exp.(-p))/(exp.p + exp.(-p))>=1 by Def5; (exp.p + exp.-p) >= 2 by Lm28; then (exp.p + exp.(-p))>=0 by AXIOMS:22; then A2:(exp.p - exp.(-p))/(exp.p + exp.(-p))*(exp.p + exp.(-p)) >=1*(exp.p + exp.(-p)) by A1,AXIOMS:25; exp.p > 0 & exp.(-p) > 0 by SIN_COS:59; then exp.p + exp.(-p) > 0+0 by REAL_1:67; then (exp.p - exp.(-p))/(exp.p + exp.(-p))*(exp.p + exp.(-p)) =exp.p - exp.(-p) by XCMPLX_1:88; then A3:(exp.p - exp.(-p))-exp.p >= (exp.p + exp.(-p))-exp.p by A2,REAL_1:49; A4: (exp.p - exp.(-p))-exp.p =exp.p -exp.p - exp.(-p) by XCMPLX_1:21 .=0-exp.(-p) by XCMPLX_1:14 .=-exp.(-p) by XCMPLX_1:150; (exp.p + exp.(-p))-exp.p =exp.p -exp.p+ exp.(-p) by XCMPLX_1:29 .=0+exp.(-p) by XCMPLX_1:14 .=exp.(-p); then A5: -exp.(-p)+exp.(-p) >= exp.(-p)+exp.(-p) by A3,A4,AXIOMS:24; exp.(-p) > 0 & exp.(-p) > 0 by SIN_COS:59; then exp.(-p) + exp.(-p) > 0+0 by REAL_1:67; hence contradiction by A5,XCMPLX_0:def 6; end; assume tanh.p<=-1; then A6: (exp.p - exp.(-p))/(exp.p + exp.(-p))<=-1 by Def5; (exp.p + exp.-p) >= 2 by Lm28; then (exp.p + exp.(-p))>=0 by AXIOMS:22; then A7:(exp.p - exp.(-p))/(exp.p + exp.(-p))*(exp.p + exp.(-p)) <=(-1)*(exp.p + exp.(-p)) by A6,AXIOMS:25; exp.p > 0 & exp.(-p) > 0 by SIN_COS:59; then exp.p + exp.(-p) > 0+0 by REAL_1:67; then (exp.p - exp.(-p))/(exp.p + exp.(-p))*(exp.p + exp.(-p)) =exp.p - exp.(-p) by XCMPLX_1:88; then exp.p - exp.(-p)<=-(exp.p + exp.(-p)) by A7,XCMPLX_1:180; then exp.p - exp.(-p)<=-exp.p + -exp.(-p) by XCMPLX_1:140; then A8:exp.p - exp.(-p)+exp.(-p) <=-exp.p + -exp.(-p)+exp.(-p) by AXIOMS:24; A9:exp.p - exp.(-p)+exp.(-p) =exp.(-p) - exp.(-p)+exp.p by XCMPLX_1:30 .=0+exp.p by XCMPLX_1:14; -exp.p + -exp.(-p)+exp.(-p) =-exp.p + (-exp.(-p)+exp.(-p)) by XCMPLX_1:1 .=-exp.p +0 by XCMPLX_0:def 6; then A10: exp.p+exp.p<=-exp.p+exp.p by A8,A9,AXIOMS:24; exp.p > 0 & exp.p > 0 by SIN_COS:59; then exp.p + exp.p > 0+0 by REAL_1:67; hence contradiction by A10,XCMPLX_0:def 6; end;