Lm1:
for x being Real holds
( cosh x >= 1 & cosh 0 = 1 & sinh 0 = 0 )
Lm2:
for x being Real holds
( sinh x = ((exp_R x) - (exp_R (- x))) / 2 & cosh x = ((exp_R x) + (exp_R (- x))) / 2 & tanh x = ((exp_R x) - (exp_R (- x))) / ((exp_R x) + (exp_R (- x))) )
Lm3:
for x being Real holds
( ((cosh x) ^2) - ((sinh x) ^2) = 1 & ((cosh x) * (cosh x)) - ((sinh x) * (sinh x)) = 1 )
Lm4:
for x being Real st x <> 0 holds
( sinh x <> 0 & tanh x <> 0 )
Lm5:
for y, z being Real st y - z <> 0 holds
sinh ((y / 2) - (z / 2)) <> 0
Lm6:
for y, z being Real st y + z <> 0 holds
sinh ((y / 2) + (z / 2)) <> 0
Lm7:
for x being Real holds
( (sinh x) ^2 = (1 / 2) * ((cosh (2 * x)) - 1) & (cosh x) ^2 = (1 / 2) * ((cosh (2 * x)) + 1) )
Lm8:
for x being Real holds
( sinh (- x) = - (sinh x) & cosh (- x) = cosh x & tanh (- x) = - (tanh x) & coth (- x) = - (coth x) & sech (- x) = sech x & cosech (- x) = - (cosech x) )
Lm9:
for x being Real holds (exp_R x) + (exp_R (- x)) >= 2
Lm10:
for y, z being Real holds
( cosh (y + z) = ((cosh y) * (cosh z)) + ((sinh y) * (sinh z)) & cosh (y - z) = ((cosh y) * (cosh z)) - ((sinh y) * (sinh z)) & sinh (y + z) = ((sinh y) * (cosh z)) + ((cosh y) * (sinh z)) & sinh (y - z) = ((sinh y) * (cosh z)) - ((cosh y) * (sinh z)) & tanh (y + z) = ((tanh y) + (tanh z)) / (1 + ((tanh y) * (tanh z))) & tanh (y - z) = ((tanh y) - (tanh z)) / (1 - ((tanh y) * (tanh z))) )
Lm11:
for y, z being Real holds
( (sinh y) + (sinh z) = (2 * (sinh ((y / 2) + (z / 2)))) * (cosh ((y / 2) - (z / 2))) & (sinh y) - (sinh z) = (2 * (sinh ((y / 2) - (z / 2)))) * (cosh ((y / 2) + (z / 2))) & (cosh y) + (cosh z) = (2 * (cosh ((y / 2) + (z / 2)))) * (cosh ((y / 2) - (z / 2))) & (cosh y) - (cosh z) = (2 * (sinh ((y / 2) - (z / 2)))) * (sinh ((y / 2) + (z / 2))) & (tanh y) + (tanh z) = (sinh (y + z)) / ((cosh y) * (cosh z)) & (tanh y) - (tanh z) = (sinh (y - z)) / ((cosh y) * (cosh z)) )
Lm12:
for x being Real holds 1 + ((cosh x) + (cosh x)) <> 0
Lm13:
for x being Real holds
( (cosh x) + 1 > 0 & (cosh x) - 1 >= 0 & ((cosh x) + 2) + (cosh x) <> 0 )
Lm14:
for y, z being Real holds
( ((sinh y) * (cosh z)) / ((cosh y) * (cosh z)) = tanh y & (sinh y) * (cosh z) = (tanh y) * ((cosh y) * (cosh z)) & sinh y = (tanh y) * (cosh y) & (sinh y) * (sinh z) = ((tanh y) * (tanh z)) * ((cosh y) * (cosh z)) )