:: The Product Space of Real Normed Spaces and Its Properties :: by Noboru Endou , Yasunari Shidama and Keiichi Miyajima :: :: Received July 9, 2007 :: Copyright (c) 2007-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies SEQ_1, SUBSET_1, NUMBERS, FUNCT_1, COMPLEX1, ARYTM_1, SEQ_2, ORDINAL2, CARD_1, ARYTM_3, XXREAL_0, FINSEQ_1, NAT_1, RVSUM_1, SQUARE_1, RELAT_1, CARD_3, FINSEQ_2, ZFMISC_1, MCART_1, PRVECT_1, XBOOLE_0, RLVECT_1, GROUP_2, STRUCT_0, ALGSTR_0, BINOP_1, VECTSP_1, REAL_1, SUPINF_2, FUNCT_6, FINSEQOP, SETWISEO, NORMSP_1, TARSKI, PRE_TOPC, EUCLID, FUNCT_2, REAL_NS1, REWRITE1, RSSPACE3, PRVECT_2, NORMSP_0, METRIC_1, RELAT_2, FUNCT_7; notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, CARD_3, XCMPLX_0, XXREAL_0, NUMBERS, XREAL_0, COMPLEX1, NAT_1, RELAT_1, FUNCT_1, RVSUM_1, STRUCT_0, ALGSTR_0, FUNCT_2, FUNCT_3, BINOP_1, REAL_1, SEQ_1, COMSEQ_2, SEQ_2, RLVECT_1, VECTSP_1, SETWISEO, FINSEQ_1, FINSEQ_2, FINSEQOP, SQUARE_1, PRE_TOPC, EUCLID, PRVECT_1, NORMSP_0, NORMSP_1, RSSPACE3, LOPBAN_1, REAL_NS1; constructors FUNCT_3, FINSEQOP, REAL_1, SEQ_2, COMPLEX1, SQUARE_1, BINOP_2, SETWISEO, PRVECT_1, RSSPACE3, LOPBAN_1, REAL_NS1, RVSUM_1, NORMSP_1, RELSET_1, COMSEQ_2, NUMBERS; registrations STRUCT_0, FINSEQ_2, FINSEQ_1, CARD_3, RLVECT_1, PRVECT_1, XREAL_0, MEMBERED, NORMSP_1, REAL_NS1, ORDINAL1, FUNCT_1, FUNCT_2, RELAT_1, XBOOLE_0, NUMBERS, VALUED_0, NORMSP_0, EUCLID, SQUARE_1; requirements NUMERALS, BOOLE, SUBSET, ARITHM; begin :: The Product Space of Real Linear Spaces theorem :: PRVECT_2:1 for s,t be Real_Sequence, g be Real st for n be Element of NAT holds t.n = |.s.n-g.| holds s is convergent & lim s = g iff t is convergent & lim t = 0; theorem :: PRVECT_2:2 for x,y be FinSequence of REAL st len x = len y & for i be Element of NAT st i in Seg len x holds 0 <= x.i & x.i <= y.i holds |.x.| <= |.y.|; theorem :: PRVECT_2:3 for F be FinSequence of REAL st for i be Element of NAT st i in dom F holds F.i = 0 holds Sum F = 0; definition let f be Function; let X be set; mode MultOps of X,f -> Function means :: PRVECT_2:def 1 dom it = dom f & for i being set st i in dom f holds it.i is Function of [:X,f.i:],f.i; end; registration let F be Domain-Sequence; let X be set; cluster -> FinSequence-like for MultOps of X,F; end; theorem :: PRVECT_2:4 for X be set, F be Domain-Sequence, p be FinSequence holds (p is MultOps of X,F iff len p = len F & for i be set st i in dom F holds p.i is Function of [:X,F.i:],F.i); definition let F be Domain-Sequence; let X be set; let p be MultOps of X,F; let i be Element of dom F; redefine func p.i -> Function of [:X,F.i:],F.i; end; theorem :: PRVECT_2:5 for X be non empty set, F be Domain-Sequence, f,g being Function of [:X,product F:],product F st for x be Element of X, d being Element of product F, i being Element of dom F holds (f.(x,d)).i = (g.(x,d)).i holds f = g; definition let F be Domain-Sequence; let X be non empty set; let p be MultOps of X,F; func [:p:] -> Function of [:X,product F:],product F means :: PRVECT_2:def 2 for x be Element of X, d being Element of product F, i being Element of dom F holds (it.(x,d)).i = (p.i).(x,d.i); end; definition let R be Relation; attr R is RealLinearSpace-yielding means :: PRVECT_2:def 3 for S be set st S in rng R holds S is RealLinearSpace; end; registration cluster non empty RealLinearSpace-yielding for FinSequence; end; definition mode RealLinearSpace-Sequence is non empty RealLinearSpace-yielding FinSequence; end; definition let G be RealLinearSpace-Sequence; let j be Element of dom G; redefine func G.j -> RealLinearSpace; end; registration cluster RealLinearSpace-yielding -> non-empty-addLoopStr-yielding for Relation; end; definition let G be RealLinearSpace-Sequence, j be Element of dom carr G; redefine func G.j -> RealLinearSpace; end; definition ::$CD 4 let G be RealLinearSpace-Sequence; func multop G -> MultOps of REAL,carr G means :: PRVECT_2:def 8 len it = len carr G & for j be Element of dom carr G holds it.j = the Mult of G.j; end; definition let G be RealLinearSpace-Sequence; func product G -> strict non empty RLSStruct equals :: PRVECT_2:def 9 RLSStruct(# product carr G, zeros G, [:addop G:], [:multop G:] #); end; registration let G be RealLinearSpace-Sequence; cluster product G -> Abelian add-associative right_zeroed right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital; end; begin :: The Product Space of Real Normed Spaces definition let R be Relation; attr R is RealNormSpace-yielding means :: PRVECT_2:def 10 for x be set st x in rng R holds x is RealNormSpace; end; registration cluster non empty RealNormSpace-yielding for FinSequence; end; definition mode RealNormSpace-Sequence is non empty RealNormSpace-yielding FinSequence; end; definition let G be RealNormSpace-Sequence; let j be Element of dom G; redefine func G.j -> RealNormSpace; end; registration cluster RealNormSpace-yielding -> RealLinearSpace-yielding for FinSequence; end; definition let G be RealNormSpace-Sequence; let x be Element of product carr G; func normsequence(G,x) -> Element of REAL len G means :: PRVECT_2:def 11 len it = len G & for j be Element of dom G holds it.j=(the normF of G.j).(x.j); end; definition let G be RealNormSpace-Sequence; func productnorm G -> Function of product carr (G qua RealLinearSpace-Sequence),REAL means :: PRVECT_2:def 12 for x being Element of product carr G holds it.x = |.normsequence(G,x).|; end; definition let G be RealNormSpace-Sequence; func product G -> strict non empty NORMSTR means :: PRVECT_2:def 13 the RLSStruct of it = product (G qua RealLinearSpace-Sequence) & the normF of it = productnorm G; end; reserve G for RealNormSpace-Sequence; theorem :: PRVECT_2:6 product G = NORMSTR(# product carr G,zeros G,[:addop G:],[:multop G:], productnorm G #); theorem :: PRVECT_2:7 for x be VECTOR of product G, y be Element of product carr G st x = y holds ||.x.|| = |.normsequence(G,y).|; theorem :: PRVECT_2:8 for x,y,z be Element of product carr G, i be Nat st i in dom x & z = [:addop G :].(x,y) holds normsequence(G,z).i <= (normsequence(G,x) + normsequence(G,y)).i; theorem :: PRVECT_2:9 for x be Element of product carr G, i be Nat st i in dom x holds 0 <= normsequence(G,x).i; registration let G be RealNormSpace-Sequence; cluster product G -> reflexive discerning RealNormSpace-like vector-distributive scalar-distributive scalar-associative scalar-unital Abelian add-associative right_zeroed right_complementable; end; theorem :: PRVECT_2:10 for G be RealNormSpace-Sequence, i be Element of dom G, x be Point of product G, y be Element of product carr G, xi be Point of G.i st y = x & xi = y.i holds ||.xi.|| <= ||.x.||; theorem :: PRVECT_2:11 for G be RealNormSpace-Sequence, i be Element of dom G, x,y be Point of product G, xi,yi be Point of G.i, zx,zy be Element of product carr G st xi=zx.i & zx=x & yi=zy.i & zy=y holds ||.yi - xi.|| <= ||.y - x.||; theorem :: PRVECT_2:12 for G be RealNormSpace-Sequence, seq be sequence of product G, x0 be Point of product G, y0 be Element of product carr G st x0 = y0 & seq is convergent & lim seq=x0 holds for i be Element of dom G ex seqi be sequence of G.i st seqi is convergent & y0.i = lim seqi & for m be Element of NAT holds ex seqm be Element of product carr G st seqm= seq.m & seqi.m=seqm.i; theorem :: PRVECT_2:13 for G be RealNormSpace-Sequence, seq be sequence of (product G), x0 be Point of product G, y0 be Element of product carr G st x0=y0 & for i be Element of dom G ex seqi be sequence of G.i st seqi is convergent & y0.i = lim seqi & for m be Element of NAT holds ex seqm be Element of product carr G st seqm = seq.m & seqi.m=seqm.i holds seq is convergent & lim seq=x0; theorem :: PRVECT_2:14 for G be RealNormSpace-Sequence st for i be Element of dom G holds G.i is complete holds product G is complete;