:: Differential Equations on Functions from $\mathbbR$ into Real {B}anach :: Space :: by Keiko Narita , Noboru Endou and Yasunari Shidama :: :: Received December 31, 2013 :: Copyright (c) 2013-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies PRE_TOPC, NORMSP_1, FUNCT_1, ARYTM_1, NAT_1, SUBSET_1, NUMBERS, CARD_1, XXREAL_0, FUNCT_7, REAL_1, ARYTM_3, RELAT_1, ORDINAL2, SEQ_1, SEQ_2, POWER, LOPBAN_1, ORDEQ_01, STRUCT_0, COMPLEX1, VALUED_1, ALI2, SUPINF_2, XBOOLE_0, ABIAN, INTEGRA1, FINSEQ_1, TARSKI, INTEGRA5, MEASURE7, CARD_3, XXREAL_1, PARTFUN1, RLVECT_1, SEQ_4, FUNCT_2, RCOMP_1, VALUED_0, XXREAL_2, FCONT_1, CFCONT_1, MEASURE5, NFCONT_1, FUNCOP_1, REALSET1, FDIFF_1, INTEGRA7, SERIES_1, SIN_COS, REAL_NS1, NEWTON, XCMPLX_0; notations TARSKI, XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_1, ORDINAL1, RELSET_1, PARTFUN1, FUNCT_2, FUNCOP_1, NUMBERS, XCMPLX_0, XXREAL_0, XREAL_0, NAT_1, COMPLEX1, XXREAL_2, FINSEQ_1, FINSEQ_2, VALUED_1, SEQ_1, SEQ_2, RVSUM_1, NEWTON, SEQ_4, RCOMP_1, FCONT_1, FDIFF_1, ABIAN, POWER, SERIES_1, MEASURE5, SIN_COS, INTEGRA1, INTEGRA5, STRUCT_0, PRE_TOPC, RLVECT_1, VFUNCT_1, NORMSP_0, NORMSP_1, EUCLID, LOPBAN_1, NFCONT_1, NFCONT_2, NDIFF_1, REAL_NS1, INTEGRA7, PDIFF_1, INTEGR18, NFCONT_3, NDIFF_3, NDIFF_5, INTEGR19, ORDEQ_01; constructors ABIAN, SEQ_2, RELSET_1, SEQ_4, VFUNCT_1, PDIFF_1, RLSUB_1, FCONT_1, NFCONT_1, INTEGRA3, INTEGRA4, NDIFF_1, NDIFF_3, INTEGR18, RVSUM_1, INTEGR19, INTEGR15, COMSEQ_2, VALUED_2, FDIFF_1, INTEGRA7, COMSEQ_3, SIN_COS, NFCONT_2, C0SP2, ORDEQ_01, RFUNCT_1, RFINSEQ2, SQUARE_1, PDIFF_7, NDIFF_5, INTEGR20; registrations STRUCT_0, NAT_1, VALUED_1, NORMSP_0, XXREAL_0, NUMBERS, XBOOLE_0, FUNCT_1, FUNCT_2, XREAL_0, MEMBERED, NORMSP_1, RELAT_1, FINSEQ_2, RELSET_1, ORDINAL1, FUNCOP_1, NEWTON, NFCONT_3, XXREAL_2, RCOMP_1, RLVECT_1, REAL_NS1, VALUED_0, FDIFF_1, FCONT_1, MEASURE5, POWER, PREPOWER, LOPBAN_1, ORDEQ_01, NDIFF_1, INT_1, PDIFF_1; requirements SUBSET, REAL, BOOLE, NUMERALS, ARITHM; begin :: Some Properties of Differentiable Functions on Real normed space reserve Y for RealNormSpace; theorem :: ORDEQ_02:1 for Y be RealNormSpace, J be Function of REAL-NS 1,REAL, x0 be Point of REAL-NS 1, y0 be Element of REAL, g be PartFunc of REAL,Y, f be PartFunc of REAL-NS 1,Y st J=proj(1,1) & x0 in dom f & y0 in dom g & x0 = <*y0*> & f = g*J holds f is_continuous_in x0 iff g is_continuous_in y0; theorem :: ORDEQ_02:2 for Y be RealNormSpace, I be Function of REAL,REAL-NS 1, x0 be Point of REAL-NS 1, y0 be Element of REAL, g be PartFunc of REAL,Y, f be PartFunc of REAL-NS 1,Y st I=proj(1,1) qua Function" & x0 in dom f & y0 in dom g & x0=<*y0*> & f*I = g holds f is_continuous_in x0 iff g is_continuous_in y0; theorem :: ORDEQ_02:3 for I be Function of REAL,REAL-NS 1 st I=proj(1,1) qua Function" holds (for R being RestFunc of REAL-NS 1,Y holds R*I is RestFunc of Y) & for L being LinearOperator of REAL-NS 1,Y holds L*I is LinearFunc of Y; theorem :: ORDEQ_02:4 for J be Function of REAL-NS 1,REAL st J = proj(1,1) holds (for R being RestFunc of Y holds R*J is RestFunc of REAL-NS 1,Y) & for L being LinearFunc of Y holds L*J is Lipschitzian LinearOperator of REAL-NS 1,Y; theorem :: ORDEQ_02:5 for I be Function of REAL,REAL-NS 1, x0 be Point of REAL-NS 1, y0 be Element of REAL, g be PartFunc of REAL,Y, f be PartFunc of REAL-NS 1,Y st I=proj(1,1) qua Function" & x0 in dom f & y0 in dom g & x0=<*y0*> & f*I = g & f is_differentiable_in x0 holds g is_differentiable_in y0 & diff(g,y0)=diff(f,x0).<*1*> & for r be Element of REAL holds diff(f,x0).<*r*> = r*diff(g,y0); theorem :: ORDEQ_02:6 for I be Function of REAL,REAL-NS 1, x0 be Point of REAL-NS 1, y0 be Real, g be PartFunc of REAL,Y, f be PartFunc of REAL-NS 1,Y st I=proj(1,1) qua Function" & x0 in dom f & y0 in dom g & x0=<*y0*> & f*I = g holds f is_differentiable_in x0 iff g is_differentiable_in y0; theorem :: ORDEQ_02:7 for J be Function of REAL-NS 1,REAL, x0 be Point of REAL-NS 1, y0 be Element of REAL, g be PartFunc of REAL,Y, f be PartFunc of REAL-NS 1,Y st J=proj(1,1) & x0 in dom f & y0 in dom g & x0=<*y0*> & f = g*J holds f is_differentiable_in x0 iff g is_differentiable_in y0; theorem :: ORDEQ_02:8 for I be Function of REAL,REAL-NS 1, x0 be Point of REAL-NS 1, y0 be Element of REAL, g be PartFunc of REAL,Y, f be PartFunc of REAL-NS 1,Y st I=proj(1,1) qua Function" & x0 in dom f & y0 in dom g & x0=<*y0*> & f*I = g & f is_differentiable_in x0 holds ||.diff(g,y0).|| = ||.diff(f,x0).||; theorem :: ORDEQ_02:9 for a,b,z be Real, p,q,x be Point of REAL-NS 1 st p= <*a*> & q= <*b*> & x = <*z*> holds ( z in ].a,b.[ implies x in ].p,q.[ ) & ( x in ].p,q.[ implies a <> b & (a < b implies z in ].a,b.[) & (a > b implies z in ].b,a.[) ); theorem :: ORDEQ_02:10 for a,b,z be Real,p,q,x be Point of REAL-NS 1 st p= <*a*> & q= <*b*> & x = <*z*> holds ( z in [.a,b.] implies x in [.p,q.] ) & ( x in [.p,q.] implies (a <= b implies z in [.a,b.]) & (a >= b implies z in [.b,a.]) ); theorem :: ORDEQ_02:11 for a,b be Real,p,q be Point of REAL-NS 1, I be Function of REAL,REAL-NS 1 st p= <*a*> & q= <*b*> & I = proj(1,1) qua Function" holds (a<=b implies I.:([.a,b.]) = [.p,q.]) & ( a Function of R_NormSpace_of_ContinuousFunctions(['a,b'],X), R_NormSpace_of_ContinuousFunctions(['a,b'],X) means :: ORDEQ_02:def 1 for x be VECTOR of R_NormSpace_of_ContinuousFunctions(['a,b'],X) ex f,g,Gf be continuous PartFunc of REAL,the carrier of X st x=f & it.x = g & dom f =['a,b'] & dom g =['a,b'] & Gf = G*f & for t be Real st t in ['a,b'] holds g/.t = y0 + integral(Gf,a,t); end; theorem :: ORDEQ_02:22 a <= b & 0 < r & (for y1,y2 be VECTOR of X holds ||.G/.y1-G/.y2.|| <= r*||.y1-y2.||) implies for u,v be VECTOR of R_NormSpace_of_ContinuousFunctions(['a,b'],X), g,h be continuous PartFunc of REAL,the carrier of X st g= Fredholm(G,a,b,y0).u & h= Fredholm(G,a,b,y0).v holds for t be Real st t in ['a,b'] holds ||. g/.t - h/.t .|| <= r*(t-a)*||.u-v.||; theorem :: ORDEQ_02:23 a <= b & 0 < r & (for y1,y2 be VECTOR of X holds ||.G/.y1-G/.y2.|| <= r*||.y1-y2.||) implies for u,v be VECTOR of R_NormSpace_of_ContinuousFunctions(['a,b'],X), m be Element of NAT, g,h be continuous PartFunc of REAL,the carrier of X st g = iter(Fredholm(G,a,b,y0),(m+1)).u & h = iter(Fredholm(G,a,b,y0),(m+1)).v holds for t be Real st t in ['a,b'] holds ||. g/.t - h/.t .|| <= ((r*(t-a))|^(m+1))/((m+1)!) * ||.u-v.||; theorem :: ORDEQ_02:24 for m be Nat st a <= b & 0 < r & (for y1,y2 be VECTOR of X holds ||.G/.y1-G/.y2.|| <= r*||.y1-y2.||) holds for u,v be VECTOR of R_NormSpace_of_ContinuousFunctions(['a,b'],X) holds ||. iter(Fredholm(G,a,b,y0),(m+1)).u - iter(Fredholm(G,a,b,y0),(m+1)).v .|| <= ((r*(b-a))|^(m+1))/((m+1)!) * ||.u-v.||; theorem :: ORDEQ_02:25 a < b & G is_Lipschitzian_on the carrier of X implies ex m be Nat st iter(Fredholm(G,a,b,y0),(m+1)) is contraction; theorem :: ORDEQ_02:26 a < b & G is_Lipschitzian_on the carrier of X implies Fredholm(G,a,b,y0) is with_unique_fixpoint; theorem :: ORDEQ_02:27 for f,g be continuous PartFunc of REAL,the carrier of X st dom f =['a,b'] & dom g =['a,b'] & Z = ].a,b.[ & a