:: Differentiation in Normed Spaces :: by Noboru Endou and Yasunari Shidama :: :: Received May 19, 2013 :: Copyright (c) 2013-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, REAL_1, ZFMISC_1, NORMSP_1, PRE_TOPC, PARTFUN1, FUNCT_1, NAT_1, FDIFF_1, SUBSET_1, RELAT_1, LOPBAN_1, ORDINAL4, RCOMP_1, TARSKI, ARYTM_3, VALUED_1, FUNCT_2, ARYTM_1, CARD_1, XXREAL_0, XBOOLE_0, CARD_3, FINSEQ_1, NDIFF_6; notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1, ORDINAL1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1, CARD_3, NUMBERS, XCMPLX_0, XXREAL_0, XREAL_0, FINSEQ_1, STRUCT_0, PRE_TOPC, RLVECT_1, NORMSP_1, VFUNCT_1, LOPBAN_1, NFCONT_1, NDIFF_1; constructors NFCONT_1, VFUNCT_1, NDIFF_1, RELSET_1, PRVECT_2; registrations RELSET_1, STRUCT_0, ORDINAL1, XREAL_0, FUNCT_1, INT_1, FUNCT_2, XBOOLE_0, SUBSET_1, FINSEQ_1, CARD_3, LOPBAN_1, PRVECT_3, NAT_1, AOFA_A00; requirements SUBSET, REAL, NUMERALS, ARITHM; begin :: Preliminaries theorem :: NDIFF_6:1 for D,E,F be non empty set holds ex I be Function of Funcs(D,Funcs(E,F)), Funcs([:D,E:],F) st I is bijective & for f be Function of D,Funcs(E,F), d,e be object st d in D & e in E holds (I.f).(d,e) = (f.d).e; theorem :: NDIFF_6:2 for D,E,F be non empty set holds ex I be Function of Funcs(D,Funcs(E,F)), Funcs([:E,D:],F) st I is bijective & for f be Function of D,Funcs(E,F), e,d be object st e in E & d in D holds (I.f).(e,d) = (f.d).e; theorem :: NDIFF_6:3 for D,E be non-empty non empty FinSequence, F be non empty set holds ex L being Function of Funcs(product D,Funcs(product E,F)), Funcs(product(E^D),F) st L is bijective & for f be Function of product D,Funcs(product E,F), e,d be FinSequence st e in product E & d in product D holds (L.f).(e^d) = (f.d).e; theorem :: NDIFF_6:4 for X,Y be non empty set holds ex I be Function of [:X,Y:],[:X,product <*Y*>:] st I is bijective & for x,y be object st x in X & y in Y holds I.(x,y) = [x,<*y*>]; theorem :: NDIFF_6:5 for X be non-empty non empty FinSequence, Y be non empty set holds ex K be Function of [:product X,Y:],product(X^<*Y*>) st K is bijective & for x be FinSequence, y be object st x in product X & y in Y holds K.(x,y) = x^<*y*>; theorem :: NDIFF_6:6 for D be non empty set, E be non-empty non empty FinSequence, F be non empty set holds ex L being Function of Funcs(D,Funcs(product E,F)), Funcs(product(E^<*D*>),F) st L is bijective & for f be Function of D,Funcs(product E,F), e be FinSequence, d be object st e in product E & d in D holds (L.f).(e^<*d*>) = (f.d).e; reserve S,T for RealNormSpace; reserve f,f1,f2 for PartFunc of S,T; reserve Z for Subset of S; reserve i,n for Nat; definition let S be set; assume S is RealNormSpace; func modetrans(S) -> RealNormSpace equals :: NDIFF_6:def 1 S; end; definition let S,T be RealNormSpace; func diff_SP(S,T) -> Function means :: NDIFF_6:def 2 dom it = NAT & it.0 = T & for i be Nat holds it.(i+1) = R_NormSpace_of_BoundedLinearOperators(S,modetrans(it.i)); end; theorem :: NDIFF_6:7 (diff_SP(S,T)).0 = T & (diff_SP(S,T)).1 = R_NormSpace_of_BoundedLinearOperators(S,T) & (diff_SP(S,T)).2 = R_NormSpace_of_BoundedLinearOperators( S, R_NormSpace_of_BoundedLinearOperators(S,T) ); theorem :: NDIFF_6:8 for i be Nat holds (diff_SP(S,T)).i is RealNormSpace; theorem :: NDIFF_6:9 for i be Nat holds ex H be RealNormSpace st H = (diff_SP(S,T)).i & (diff_SP(S,T)).(i+1) = R_NormSpace_of_BoundedLinearOperators(S,H); definition let S,T be RealNormSpace, i be Nat; func diff_SP(i,S,T) -> RealNormSpace equals :: NDIFF_6:def 3 diff_SP(S,T).i; end; theorem :: NDIFF_6:10 for i be Nat holds diff_SP(i+1,S,T) = R_NormSpace_of_BoundedLinearOperators(S,diff_SP(i,S,T)); definition let S,T be RealNormSpace, f be set; assume f is PartFunc of S,T; func modetrans(f,S,T) -> PartFunc of S,T equals :: NDIFF_6:def 4 f; end; definition let S,T be RealNormSpace, f be PartFunc of S,T, Z be Subset of S; func diff(f,Z) -> Function means :: NDIFF_6:def 5 dom it = NAT & it.0 = f|Z & for i be Nat holds it.(i+1) = modetrans(it.i,S,diff_SP(i,S,T)) `| Z; end; theorem :: NDIFF_6:11 diff(f,Z).0 = f|Z & diff(f,Z).1 = (f|Z)`| Z & diff(f,Z).2 = ((f|Z)`| Z) `| Z; theorem :: NDIFF_6:12 for i be Nat holds diff(f,Z).i is PartFunc of S,diff_SP(i,S,T); definition let S,T be RealNormSpace, f be PartFunc of S,T, Z be Subset of S, i be Nat; func diff(f,i,Z) -> PartFunc of S,diff_SP(i,S,T) equals :: NDIFF_6:def 6 diff(f,Z).i; end; theorem :: NDIFF_6:13 diff(f,i+1,Z) = diff(f,i,Z) `|Z; definition let S,T be RealNormSpace; let f be PartFunc of S,T; let Z be Subset of S; let n be Nat; pred f is_differentiable_on n,Z means :: NDIFF_6:def 7 Z c= dom f & for i be Nat st i <= n-1 holds modetrans(diff(f,Z).i,S,diff_SP(i,S,T)) is_differentiable_on Z; end; theorem :: NDIFF_6:14 f is_differentiable_on n,Z iff Z c= dom f & for i be Nat st i <= n-1 holds diff(f,i,Z) is_differentiable_on Z; theorem :: NDIFF_6:15 f is_differentiable_on 1,Z iff Z c= dom f & f|Z is_differentiable_on Z; theorem :: NDIFF_6:16 f is_differentiable_on 2,Z iff Z c= dom f & f|Z is_differentiable_on Z & (f|Z)`|Z is_differentiable_on Z; theorem :: NDIFF_6:17 for S,T be RealNormSpace, f be PartFunc of S,T, Z be Subset of S, n be Nat st f is_differentiable_on n,Z for m be Nat st m <= n holds f is_differentiable_on m, Z; theorem :: NDIFF_6:18 for n be Nat, f be PartFunc of S,T st 1 <= n & f is_differentiable_on n,Z holds Z is open; theorem :: NDIFF_6:19 for n being Nat, f being PartFunc of S,T st 1<=n & f is_differentiable_on n,Z holds for i being Nat st i <= n holds diff_SP(S,T).i is RealNormSpace & diff(f,Z).i is PartFunc of S,diff_SP(i,S,T) & dom diff(f,i,Z) = Z; theorem :: NDIFF_6:20 for n being Nat, f,g being PartFunc of S,T st 1<=n & f is_differentiable_on n,Z & g is_differentiable_on n,Z holds for i being Nat st i<=n holds diff(f+g,i,Z) = diff(f,i,Z) + diff(g,i,Z); theorem :: NDIFF_6:21 for n be Nat, f,g be PartFunc of S,T st 1 <= n & f is_differentiable_on n,Z & g is_differentiable_on n,Z holds f+g is_differentiable_on n,Z; theorem :: NDIFF_6:22 for n being Nat, f,g being PartFunc of S,T st 1<=n & f is_differentiable_on n,Z & g is_differentiable_on n,Z holds for i being Nat st i<=n holds diff(f-g,i,Z) = diff(f,i,Z) - diff(g,i,Z); theorem :: NDIFF_6:23 for n be Nat, f,g be PartFunc of S,T st 1 <= n & f is_differentiable_on n,Z & g is_differentiable_on n,Z holds f-g is_differentiable_on n,Z; theorem :: NDIFF_6:24 for n be Nat, r be Real, f be PartFunc of S,T st 1<= n & f is_differentiable_on n,Z holds for i be Nat st i <= n holds diff(r(#)f,i,Z) = r(#)diff(f,i,Z); theorem :: NDIFF_6:25 for n be Nat, r be Real, f be PartFunc of S,T st 1 <= n & f is_differentiable_on n,Z holds r(#)f is_differentiable_on n,Z; theorem :: NDIFF_6:26 for n be Nat, f be PartFunc of S,T st 1 <= n & f is_differentiable_on n,Z holds for i be Nat st i <= n holds diff(-f,i,Z) = -diff(f,i,Z); theorem :: NDIFF_6:27 for n be Nat, f be PartFunc of S,T st 1<= n & f is_differentiable_on n,Z holds -f is_differentiable_on n,Z;