:: Uniform Continuity of Functions on Normed Complex Linear Spaces :: by Noboru Endou :: :: Received October 6, 2004 :: Copyright (c) 2004-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, REAL_1, XCMPLX_0, NORMSP_1, CLVECT_1, PARTFUN1, NFCONT_2, TARSKI, RELAT_1, CARD_1, ARYTM_3, PRE_TOPC, ARYTM_1, STRUCT_0, COMPLEX1, XBOOLE_0, XXREAL_0, VALUED_1, SUPINF_2, FUNCT_1, CFCONT_1, NFCONT_1, SUBSET_1, RCOMP_1, NAT_1, VALUED_0, SEQ_2, ORDINAL2, FCONT_1, FUNCT_2, SEQ_4, CLOPBAN1, ALI2, FUNCOP_1, POWER, RSSPACE3, FUNCT_7; notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XXREAL_0, COMPLEX1, XREAL_0, REAL_1, NAT_1, RELAT_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, PRE_TOPC, VALUED_0, STRUCT_0, RLVECT_1, FUNCOP_1, VALUED_1, SEQ_2, SEQ_4, FUNCT_7, VFUNCT_1, POWER, VFUNCT_2, NORMSP_0, NORMSP_1, CLVECT_1, NFCONT_1, CLOPBAN1, NFCONT_2, NCFCONT1, CSSPACE3; constructors REAL_1, SQUARE_1, COMPLEX1, SEQ_2, SEQ_4, POWER, FUNCT_7, CSSPACE3, NFCONT_1, NFCONT_2, CLOPBAN3, VFUNCT_2, NCFCONT1, RELSET_1, COMSEQ_2; registrations XBOOLE_0, FUNCT_1, ORDINAL1, RELSET_1, XXREAL_0, XREAL_0, MEMBERED, STRUCT_0, VALUED_1, FUNCT_2, NUMBERS, VALUED_0, FUNCT_7, CLVECT_1, XCMPLX_0, NAT_1; requirements SUBSET, REAL, BOOLE, NUMERALS, ARITHM; begin :: Uniform Continuity of Functions on Real and Complex Normed Linear Spaces reserve X,X1 for set, r,s for Real, z for Complex, RNS for RealNormSpace, CNS, CNS1,CNS2 for ComplexNormSpace; definition let X be set; let CNS1,CNS2 be ComplexNormSpace; let f be PartFunc of CNS1,CNS2; pred f is_uniformly_continuous_on X means :: NCFCONT2:def 1 X c= dom f & for r st 0 < r ex s st 0 < s & for x1,x2 be Point of CNS1 st x1 in X & x2 in X & ||.x1 - x2.|| < s holds ||. f/.x1 - f/.x2 .|| < r; end; definition let X be set; let RNS be RealNormSpace; let CNS be ComplexNormSpace; let f be PartFunc of CNS,RNS; pred f is_uniformly_continuous_on X means :: NCFCONT2:def 2 X c= dom f & for r st 0 < r ex s st 0 < s & for x1,x2 be Point of CNS st x1 in X & x2 in X & ||.x1 - x2.|| < s holds ||. f/.x1 - f/.x2 .|| < r; end; definition let X be set; let RNS be RealNormSpace; let CNS be ComplexNormSpace; let f be PartFunc of RNS,CNS; pred f is_uniformly_continuous_on X means :: NCFCONT2:def 3 X c= dom f & for r st 0 < r ex s st 0 < s & for x1,x2 be Point of RNS st x1 in X & x2 in X & ||.x1 - x2.|| < s holds ||. f/.x1 - f/.x2 .|| < r; end; definition let X be set; let CNS be ComplexNormSpace; let f be PartFunc of the carrier of CNS,COMPLEX; pred f is_uniformly_continuous_on X means :: NCFCONT2:def 4 X c= dom f & for r st 0 < r ex s st 0 < s & for x1,x2 be Point of CNS st x1 in X & x2 in X & ||.x1 - x2.|| < s holds |.(f/.x1 - f/.x2).| < r; end; definition let X be set; let CNS be ComplexNormSpace; let f be PartFunc of the carrier of CNS,REAL; pred f is_uniformly_continuous_on X means :: NCFCONT2:def 5 X c= dom f & for r st 0 < r ex s st 0 < s & for x1,x2 be Point of CNS st x1 in X & x2 in X & ||.x1 - x2.|| < s holds |.f/.x1 - f/.x2.| < r; end; definition let X be set; let RNS be RealNormSpace; let f be PartFunc of the carrier of RNS,COMPLEX; pred f is_uniformly_continuous_on X means :: NCFCONT2:def 6 X c= dom f & for r st 0 < r ex s st 0 < s & for x1,x2 be Point of RNS st x1 in X & x2 in X & ||.x1 - x2.|| < s holds |.(f/.x1 - f/.x2).| < r; end; theorem :: NCFCONT2:1 for f be PartFunc of CNS1,CNS2 st f is_uniformly_continuous_on X & X1 c= X holds f is_uniformly_continuous_on X1; theorem :: NCFCONT2:2 for f be PartFunc of CNS,RNS st f is_uniformly_continuous_on X & X1 c= X holds f is_uniformly_continuous_on X1; theorem :: NCFCONT2:3 for f be PartFunc of RNS,CNS st f is_uniformly_continuous_on X & X1 c= X holds f is_uniformly_continuous_on X1; theorem :: NCFCONT2:4 for f1,f2 be PartFunc of CNS1,CNS2 st f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 holds f1+f2 is_uniformly_continuous_on X/\X1 ; theorem :: NCFCONT2:5 for f1,f2 be PartFunc of CNS,RNS st f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 holds f1+f2 is_uniformly_continuous_on X/\X1 ; theorem :: NCFCONT2:6 for f1,f2 be PartFunc of RNS,CNS st f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 holds f1+f2 is_uniformly_continuous_on X/\X1 ; theorem :: NCFCONT2:7 for f1,f2 be PartFunc of CNS1,CNS2 st f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 holds f1-f2 is_uniformly_continuous_on X/\X1 ; theorem :: NCFCONT2:8 for f1,f2 be PartFunc of CNS,RNS st f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 holds f1-f2 is_uniformly_continuous_on X/\X1 ; theorem :: NCFCONT2:9 for f1,f2 be PartFunc of RNS,CNS st f1 is_uniformly_continuous_on X & f2 is_uniformly_continuous_on X1 holds f1-f2 is_uniformly_continuous_on X/\X1 ; theorem :: NCFCONT2:10 for f be PartFunc of CNS1,CNS2 st f is_uniformly_continuous_on X holds z(#)f is_uniformly_continuous_on X; theorem :: NCFCONT2:11 for f be PartFunc of CNS,RNS st f is_uniformly_continuous_on X holds r(#)f is_uniformly_continuous_on X; theorem :: NCFCONT2:12 for f be PartFunc of RNS,CNS st f is_uniformly_continuous_on X holds z(#)f is_uniformly_continuous_on X; theorem :: NCFCONT2:13 for f be PartFunc of CNS1,CNS2 st f is_uniformly_continuous_on X holds -f is_uniformly_continuous_on X; theorem :: NCFCONT2:14 for f be PartFunc of CNS,RNS st f is_uniformly_continuous_on X holds - f is_uniformly_continuous_on X; theorem :: NCFCONT2:15 for f be PartFunc of RNS,CNS st f is_uniformly_continuous_on X holds - f is_uniformly_continuous_on X; theorem :: NCFCONT2:16 for f be PartFunc of CNS1,CNS2 st f is_uniformly_continuous_on X holds ||.f.|| is_uniformly_continuous_on X; theorem :: NCFCONT2:17 for f be PartFunc of CNS,RNS st f is_uniformly_continuous_on X holds ||.f.|| is_uniformly_continuous_on X; theorem :: NCFCONT2:18 for f be PartFunc of RNS,CNS st f is_uniformly_continuous_on X holds ||.f.|| is_uniformly_continuous_on X; theorem :: NCFCONT2:19 for f be PartFunc of CNS1,CNS2 st f is_uniformly_continuous_on X holds f is_continuous_on X; theorem :: NCFCONT2:20 for f be PartFunc of CNS,RNS st f is_uniformly_continuous_on X holds f is_continuous_on X; theorem :: NCFCONT2:21 for f be PartFunc of RNS,CNS st f is_uniformly_continuous_on X holds f is_continuous_on X; theorem :: NCFCONT2:22 for f be PartFunc of the carrier of CNS, COMPLEX st f is_uniformly_continuous_on X holds f is_continuous_on X; theorem :: NCFCONT2:23 for f be PartFunc of the carrier of CNS, REAL st f is_uniformly_continuous_on X holds f is_continuous_on X; theorem :: NCFCONT2:24 for f be PartFunc of the carrier of RNS, COMPLEX st f is_uniformly_continuous_on X holds f is_continuous_on X; theorem :: NCFCONT2:25 for f be PartFunc of CNS1,CNS2 st f is_Lipschitzian_on X holds f is_uniformly_continuous_on X; theorem :: NCFCONT2:26 for f be PartFunc of CNS,RNS st f is_Lipschitzian_on X holds f is_uniformly_continuous_on X; theorem :: NCFCONT2:27 for f be PartFunc of RNS,CNS st f is_Lipschitzian_on X holds f is_uniformly_continuous_on X; theorem :: NCFCONT2:28 for f be PartFunc of CNS1,CNS2, Y be Subset of CNS1 st Y is compact & f is_continuous_on Y holds f is_uniformly_continuous_on Y; theorem :: NCFCONT2:29 for f be PartFunc of CNS,RNS, Y be Subset of CNS st Y is compact & f is_continuous_on Y holds f is_uniformly_continuous_on Y; theorem :: NCFCONT2:30 for f be PartFunc of RNS,CNS, Y be Subset of RNS st Y is compact & f is_continuous_on Y holds f is_uniformly_continuous_on Y; theorem :: NCFCONT2:31 for f be PartFunc of CNS1,CNS2, Y be Subset of CNS1 st Y c= dom f & Y is compact & f is_uniformly_continuous_on Y holds f.:Y is compact; theorem :: NCFCONT2:32 for f be PartFunc of CNS,RNS, Y be Subset of CNS st Y c= dom f & Y is compact & f is_uniformly_continuous_on Y holds f.:Y is compact; theorem :: NCFCONT2:33 for f be PartFunc of RNS,CNS, Y be Subset of RNS st Y c= dom f & Y is compact & f is_uniformly_continuous_on Y holds f.:Y is compact; theorem :: NCFCONT2:34 for f be PartFunc of the carrier of CNS,REAL, Y be Subset of CNS st Y <> {} & Y c= dom f & Y is compact & f is_uniformly_continuous_on Y ex x1,x2 be Point of CNS st x1 in Y & x2 in Y & f/.x1 = upper_bound (f.:Y) & f/.x2 = lower_bound (f.:Y); theorem :: NCFCONT2:35 for f be PartFunc of CNS1,CNS2 st X c= dom f & f|X is constant holds f is_uniformly_continuous_on X; theorem :: NCFCONT2:36 for f be PartFunc of CNS,RNS st X c= dom f & f|X is constant holds f is_uniformly_continuous_on X; theorem :: NCFCONT2:37 for f be PartFunc of RNS,CNS st X c= dom f & f|X is constant holds f is_uniformly_continuous_on X; begin :: Contraction Mapping Principle on Normed Complex Linear Spaces definition let M be non empty CNORMSTR; let f be Function of M,M; attr f is contraction means :: NCFCONT2:def 7 ex L being Real st 0 < L & L < 1 & for x,y being Point of M holds ||.f.x - f.y.|| <=L*||.x - y.||; end; registration let M be ComplexBanachSpace; cluster contraction for Function of M,M; end; definition let M be ComplexBanachSpace; mode Contraction of M is contraction Function of M,M; end; theorem :: NCFCONT2:38 for X be ComplexNormSpace, x,y be Point of X holds ||.x-y.|| > 0 iff x <> y; theorem :: NCFCONT2:39 for X be ComplexNormSpace, x, y be Point of X holds ||.x-y.|| = ||.y-x .||; theorem :: NCFCONT2:40 for X be ComplexBanachSpace, f be Function of X,X st f is Contraction of X ex xp be Point of X st f.xp=xp & for x be Point of X st f.x=x holds xp=x; theorem :: NCFCONT2:41 for X be ComplexBanachSpace for f be Function of X,X st ex n0 be Element of NAT st iter(f,n0) is Contraction of X holds ex xp be Point of X st f .xp=xp & for x be Point of X st f.x=x holds xp=x;