:: Continuous Functions on Real and Complex Normed Linear Spaces :: by Noboru Endou :: :: Received August 20, 2004 :: Copyright (c) 2004-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, SUBSET_1, REAL_1, XCMPLX_0, CLVECT_1, NORMSP_1, NAT_1, ARYTM_1, ARYTM_3, COMPLEX1, RELAT_1, FUNCT_1, PARTFUN1, STRUCT_0, PRE_TOPC, RCOMP_1, CARD_1, TARSKI, XXREAL_0, SUPINF_2, VALUED_0, SEQ_2, ORDINAL2, FCONT_1, FUNCT_2, XBOOLE_0, VALUED_1, CFCONT_1, COMSEQ_1, SEQ_1, SEQ_4, NFCONT_1; notations TARSKI, XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_1, RELSET_1, PARTFUN1, PARTFUN2, FUNCT_2, PRE_TOPC, XREAL_0, ORDINAL1, NUMBERS, XCMPLX_0, COMPLEX1, REAL_1, NAT_1, RLVECT_1, SEQ_1, SEQ_2, VALUED_0, SEQ_4, VFUNCT_1, COMSEQ_1, CFCONT_1, RCOMP_1, COMSEQ_2, STRUCT_0, VFUNCT_2, CLVECT_1, NFCONT_1, XXREAL_0, NORMSP_0, NORMSP_1; constructors REAL_1, SEQ_4, RCOMP_1, PARTFUN2, COMSEQ_2, COMSEQ_3, CFCONT_1, NFCONT_1, VFUNCT_2, SEQ_2, RELSET_1; registrations XBOOLE_0, ORDINAL1, RELSET_1, NUMBERS, NAT_1, STRUCT_0, VALUED_0, XREAL_0, VFUNCT_1, FUNCT_2, XCMPLX_0; requirements SUBSET, REAL, BOOLE, NUMERALS, ARITHM; begin :: Continuous Function on Normed Complex Linear Spaces reserve n,m for Element of NAT; reserve r,s for Real; reserve z for Complex; reserve CNS,CNS1,CNS2 for ComplexNormSpace; reserve RNS for RealNormSpace; theorem :: NCFCONT1:1 for seq be sequence of CNS holds -seq=(-1r)*seq; definition let CNS; let x0 be Point of CNS; mode Neighbourhood of x0 -> Subset of CNS means :: NCFCONT1:def 1 ex g be Real st 0{} & ( dom f) is compact & f is_continuous_on (dom f) holds ex x1,x2 be Point of CNS st x1 in dom f & x2 in dom f & f/.x1 = upper_bound (rng f) & f/.x2 = lower_bound (rng f); theorem :: NCFCONT1:87 for f be PartFunc of CNS1,CNS2 st dom f<>{} & (dom f) is compact & f is_continuous_on (dom f) holds ex x1,x2 be Point of CNS1 st x1 in dom f & x2 in dom f & ||.f.||/.x1 = upper_bound (rng ||.f.||) & ||.f.||/.x2 = lower_bound (rng ||.f.||); theorem :: NCFCONT1:88 for f be PartFunc of CNS,RNS st dom f<>{} & (dom f) is compact & f is_continuous_on (dom f) holds ex x1,x2 be Point of CNS st x1 in dom f & x2 in dom f & ||.f.||/.x1 = upper_bound (rng ||.f.||) & ||.f.||/.x2 = lower_bound (rng ||.f.||); theorem :: NCFCONT1:89 for f be PartFunc of RNS,CNS st dom f<>{} & (dom f) is compact & f is_continuous_on (dom f) holds ex x1,x2 be Point of RNS st x1 in dom f & x2 in dom f & ||.f.||/.x1 = upper_bound (rng ||.f.||) & ||.f.||/.x2 = lower_bound (rng ||.f.||); theorem :: NCFCONT1:90 for f be PartFunc of CNS1,CNS2 holds (||.f.||)|X = ||.(f|X).||; theorem :: NCFCONT1:91 for f be PartFunc of CNS,RNS holds (||.f.||)|X = ||.(f|X).||; theorem :: NCFCONT1:92 for f be PartFunc of RNS,CNS holds (||.f.||)|X = ||.(f|X).||; theorem :: NCFCONT1:93 for f be PartFunc of CNS1,CNS2, Y be Subset of CNS1 st Y<>{} & Y c= dom f & Y is compact & f is_continuous_on Y holds ex x1,x2 be Point of CNS1 st x1 in Y & x2 in Y & ||.f.||/.x1 = upper_bound (||.f.||.:Y) & ||.f.||/.x2 = lower_bound (||.f.||.:Y); theorem :: NCFCONT1:94 for f be PartFunc of CNS,RNS,Y be Subset of CNS st Y<>{} & Y c= dom f & Y is compact & f is_continuous_on Y holds ex x1,x2 be Point of CNS st x1 in Y & x2 in Y & ||.f.||/.x1 = upper_bound (||.f.||.:Y) & ||.f.||/.x2 = lower_bound (||.f.||.:Y); theorem :: NCFCONT1:95 for f be PartFunc of RNS,CNS,Y be Subset of RNS st Y<>{} & Y c= dom f & Y is compact & f is_continuous_on Y holds ex x1,x2 be Point of RNS st x1 in Y & x2 in Y & ||.f.||/.x1 = upper_bound (||.f.||.:Y) & ||.f.||/.x2 = lower_bound (||.f.||.:Y); theorem :: NCFCONT1:96 for f be PartFunc of the carrier of CNS,REAL, Y be Subset of CNS st Y <>{} & Y c= dom f & Y is compact & f is_continuous_on Y holds ex x1,x2 be Point of CNS st x1 in Y & x2 in Y & f/.x1 = upper_bound (f.:Y) & f/.x2 = lower_bound (f.:Y); definition let CNS1,CNS2 be ComplexNormSpace; let X be set; let f be PartFunc of CNS1,CNS2; pred f is_Lipschitzian_on X means :: NCFCONT1:def 17 X c= dom f & ex r st 0 < r & for x1,x2 be Point of CNS1 st x1 in X & x2 in X holds ||.f/.x1-f/.x2.||<=r*||.x1-x2 .||; end; definition let CNS be ComplexNormSpace; let RNS be RealNormSpace; let X be set; let f be PartFunc of CNS,RNS; pred f is_Lipschitzian_on X means :: NCFCONT1:def 18 X c= dom f & ex r st 0 < r & for x1,x2 be Point of CNS st x1 in X & x2 in X holds ||.f/.x1-f/.x2.||<=r*||.x1-x2 .||; end; definition let RNS be RealNormSpace; let CNS be ComplexNormSpace; let X be set; let f be PartFunc of RNS,CNS; pred f is_Lipschitzian_on X means :: NCFCONT1:def 19 X c= dom f & ex r st 0 < r & for x1,x2 be Point of RNS st x1 in X & x2 in X holds ||.f/.x1-f/.x2.||<=r*||.x1-x2 .||; end; definition let CNS be ComplexNormSpace; let X be set; let f be PartFunc of the carrier of CNS,COMPLEX; pred f is_Lipschitzian_on X means :: NCFCONT1:def 20 X c= dom f & ex r st 0