:: Basic Properties of Metrizable Topological Spaces :: by Karol P\c{a}k :: :: Received March 31, 2009 :: Copyright (c) 2009-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, PRE_TOPC, SUBSET_1, SETFAM_1, PCOMPS_1, CARD_1, FINSET_1, T_0TOPSP, RELAT_1, XBOOLE_0, FUNCT_1, RCOMP_1, ORDINAL2, TOPS_2, WAYBEL23, TARSKI, RLVECT_3, STRUCT_0, ZFMISC_1, XXREAL_0, ARYTM_3, METRIC_1, CARD_5, NAGATA_1, TOPREAL7, CARD_2, MCART_1, ORDINAL1, WEIERSTR, TOPMETR, ARYTM_1, COMPLEX1, XXREAL_1, TOPGEN_4, NAT_1, NEWTON, CARD_3, NATTRA_1, TOPGEN_1, TOPS_1, REAL_1, FUNCOP_1, EUCLID, FINSEQ_2, FINSEQ_1, CONNSP_1, METRIZTS; notations BINOP_1, TOPMETR, CARD_1, CANTOR_1, COMPLEX1, FINSET_1, TARSKI, XBOOLE_0, RELAT_1, SUBSET_1, ORDINAL1, NUMBERS, ZFMISC_1, XREAL_0, REAL_1, DOMAIN_1, METRIC_1, PCOMPS_1, CARD_3, KURATO_0, WAYBEL23, TOPGEN_1, FUNCOP_1, XCMPLX_0, TOPS_1, CARD_2, NEWTON, BORSUK_1, NAGATA_1, TEX_2, TOPGEN_4, RCOMP_1, WEIERSTR, TOPREAL7, ORDERS_4, XXREAL_0, FUNCT_1, RELSET_1, FUNCT_2, FUNCT_3, NAT_1, FINSEQ_1, SETFAM_1, STRUCT_0, PRE_TOPC, CONNSP_1, TOPS_2, BORSUK_3, EUCLID, FINSEQ_2; constructors REAL_1, CANTOR_1, TOPGEN_4, WAYBEL23, TOPGEN_1, TOPS_1, FUNCT_3, TOPREAL9, CARD_2, NEWTON, CARD_5, NAGATA_1, TEX_2, CONNSP_1, RCOMP_1, WEIERSTR, TOPREAL7, ORDERS_4, TOPS_2, BORSUK_3, FUNCSDOM, KURATO_0, BINOP_2; registrations TOPMETR, PRE_TOPC, PCOMPS_1, XREAL_0, SUBSET_1, STRUCT_0, TOPS_1, METRIC_1, XXREAL_0, YELLOW13, CARD_1, XBOOLE_0, FINSET_1, FUNCT_1, ORDINAL1, COMPTS_1, RELAT_1, XCMPLX_0, CARD_LAR, BORSUK_1, TOPGEN_4, TOPREAL7, EUCLID, RELSET_1, VALUED_0, NEWTON, BINOP_2, XTUPLE_0; requirements ARITHM, BOOLE, NUMERALS, REAL, SUBSET; begin :: Preliminaries reserve T, T1, T2 for TopSpace, A, B for Subset of T, F, G for Subset-Family of T, A1 for Subset of T1, A2 for Subset of T2, TM, TM1, TM2 for metrizable TopSpace, Am, Bm for Subset of TM, Fm, Gm for Subset-Family of TM, C for Cardinal, iC for infinite Cardinal; definition let T1,T2,A1,A2; pred A1,A2 are_homeomorphic means :: METRIZTS:def 1 T1|A1,T2|A2 are_homeomorphic; end; theorem :: METRIZTS:1 T1,T2 are_homeomorphic iff [#]T1,[#]T2 are_homeomorphic; theorem :: METRIZTS:2 for f be Function of T1,T2 st f is being_homeomorphism for g be Function of T1|A1,T2|(f.:A1) st g = f|A1 holds g is being_homeomorphism; theorem :: METRIZTS:3 for f be Function of T1,T2 st f is being_homeomorphism holds A1,f.:A1 are_homeomorphic; theorem :: METRIZTS:4 T1,T2 are_homeomorphic implies weight T1 = weight T2; registration cluster empty -> metrizable for TopSpace; cluster metrizable -> T_4 for TopSpace; let M be MetrSpace; cluster TopSpaceMetr M -> metrizable; end; registration let TM,Am; cluster TM|Am -> metrizable; end; registration let TM1,TM2; cluster [:TM1,TM2:] -> metrizable; end; registration let T be empty TopSpace; cluster weight T -> empty; end; theorem :: METRIZTS:5 weight [:T1,T2:] c= weight T1 *` weight T2; theorem :: METRIZTS:6 T1 is non empty & T2 is non empty implies weight T1 c= weight [: T1,T2:] & weight T2 c= weight[:T1,T2:]; registration let T1,T2 be second-countable TopSpace; cluster [:T1,T2:] -> second-countable; end; theorem :: METRIZTS:7 card (F|A) c= card F; theorem :: METRIZTS:8 for Bas be Basis of T holds Bas|A is Basis of T|A; registration let T be second-countable TopSpace; let A be Subset of T; cluster T|A -> second-countable; end; registration let M be non empty MetrSpace; let A be non empty Subset of TopSpaceMetr M; cluster dist_min A -> continuous; end; theorem :: METRIZTS:9 :: General Topology Th 4.1.10 for B be Subset of T,F be Subset of T|A st F = B holds T|A|F = T|B; :: F_sigma and G_delta Types of Subsets registration let TM; cluster open -> F_sigma for Subset of TM; cluster closed -> G_delta for Subset of TM; end; theorem :: METRIZTS:10 for F be Subset of T|B st A is F_sigma & F = A/\B holds F is F_sigma; theorem :: METRIZTS:11 for F be Subset of T|B st A is G_delta & F = A/\B holds F is G_delta; theorem :: METRIZTS:12 T is T_1 & A is discrete implies A is open Subset of T|(Cl A); theorem :: METRIZTS:13 for T st for F st F is open & F is Cover of T ex G st G c= F & G is Cover of T & card G c= C holds for A st A is closed & A is discrete holds card A c= C; theorem :: METRIZTS:14 for TM st for Am st Am is closed & Am is discrete holds card Am c= iC holds for Am st Am is discrete holds card Am c= iC; theorem :: METRIZTS:15 for T st for A st A is discrete holds card A c= C for F st F is open & not {} in F & for A,B st A in F & B in F & A <> B holds A misses B holds card F c= C; theorem :: METRIZTS:16 for F st F is Cover of T ex G st G c= F & G is Cover of T & card G c= card [#]T; theorem :: METRIZTS:17 Am is dense implies weight TM c= omega *` card Am; begin :: Main Properties :: General Topology Th 4.1.15 (a) <=> (c) theorem :: METRIZTS:18 weight TM c= iC iff for Fm st Fm is open & Fm is Cover of TM ex Gm st Gm c=Fm & Gm is Cover of TM & card Gm c= iC; :: General Topology Th 4.1.15 (a) <=> (d) theorem :: METRIZTS:19 weight TM c=iC iff for Am st Am is closed & Am is discrete holds card Am c= iC; :: General Topology Th 4.1.15 (a) <=> (e) theorem :: METRIZTS:20 weight TM c= iC iff for Am st Am is discrete holds card Am c= iC; :: General Topology Th 4.1.15 (a) <=> (f) theorem :: METRIZTS:21 weight TM c= iC iff for Fm st Fm is open & not{} in Fm & for Am, Bm st Am in Fm & Bm in Fm & Am <> Bm holds Am misses Bm holds card Fm c= iC; :: General Topology Th 4.1.15 (a) <=> (g) theorem :: METRIZTS:22 weight TM c= iC iff density TM c= iC; theorem :: METRIZTS:23 for B be Basis of TM st for Fm st Fm is open & Fm is Cover of TM ex Gm st Gm c=Fm & Gm is Cover of TM & card Gm c= iC ex underB be Basis of TM st underB c= B & card underB c= iC; begin :: Properties of Lindel\"of spaces definition let T; attr T is Lindelof means :: METRIZTS:def 2 for F st F is open & F is Cover of T ex G st G c=F & G is Cover of T & G is countable; end; theorem :: METRIZTS:24 for B be Basis of TM st TM is Lindelof ex B9 be Basis of TM st B9 c= B & B9 is countable; registration cluster Lindelof -> second-countable for metrizable TopSpace; end; registration cluster Lindelof -> separable for metrizable TopSpace; cluster separable -> Lindelof for metrizable TopSpace; end; registration :: General Topology Th 3.8.1 cluster Lindelof metrizable for non empty TopSpace; :: General Topology Th 3.8.2 cluster second-countable -> Lindelof for TopSpace; cluster regular Lindelof -> normal for TopSpace; cluster countable -> Lindelof for TopSpace; end; registration let n be Nat; cluster the TopStruct of TOP-REAL n -> second-countable; end; registration let T be Lindelof TopSpace; let A be closed Subset of T; cluster T|A -> Lindelof; end; registration let TM be Lindelof metrizable TopSpace; let A be Subset of TM; :: General Topology Cor 3.8.4 cluster TM|A -> Lindelof; end; definition let T; let A,B,L be Subset of T; pred L separates A,B means :: METRIZTS:def 3 ex U,W be open Subset of T st A c=U & B c= W & U misses W & L=(U\/W)`; end; :: Teoria wymiaru Lm 1.2.8 theorem :: METRIZTS:25 Am,Bm are_separated implies ex L be Subset of TM st L separates Am,Bm; :: Teoria wymiaru Lm 1.2.9 theorem :: METRIZTS:26 for M be Subset of TM, A1,A2 be closed Subset of TM, V1,V2 be open Subset of TM st A1 c=V1 & A2 c=V2 & Cl V1 misses Cl V2 for mV1,mV2,mL be Subset of TM|M st mV1 = M/\Cl V1 & mV2 = M/\Cl V2 & mL separates mV1,mV2 ex L be Subset of TM st L separates A1,A2 & M/\L c= mL;