:: Integral of Real-valued Measurable Function :: by Yasunari Shidama and Noboru Endou :: :: Received October 27, 2006 :: Copyright (c) 2006-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, XBOOLE_0, PROB_1, FUNCT_1, PARTFUN1, SUBSET_1, REAL_1, NAT_1, COMPLEX1, MEASURE6, RELAT_1, MEASURE1, MESFUNC2, TARSKI, FINSEQ_1, XXREAL_0, ARYTM_3, ARYTM_1, VALUED_0, MESFUNC1, SETFAM_1, VALUED_1, RAT_1, RFUNCT_3, SUPINF_2, CARD_1, SUPINF_1, MESFUNC5, MESFUNC3, INT_1, ZFMISC_1, INTEGRA5, XCMPLX_0; notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, NUMBERS, XXREAL_3, XCMPLX_0, DOMAIN_1, XREAL_0, REAL_1, RAT_1, NAT_1, NAT_D, FUNCT_1, RELSET_1, PARTFUN1, FINSEQ_1, VALUED_1, SUPINF_2, COMPLEX1, XXREAL_0, VALUED_0, RFUNCT_3, MEASURE6, FUNCT_2, SUPINF_1, MEASURE1, EXTREAL1, MESFUNC1, MESFUNC2, MESFUNC3, SETFAM_1, PROB_1, MESFUNC5; constructors DOMAIN_1, REAL_1, SQUARE_1, NAT_D, MEASURE3, MEASURE6, EXTREAL1, MESFUNC1, BINARITH, MESFUNC2, MESFUNC3, MESFUNC5, SUPINF_1, RELSET_1, ABSVALUE, RFUNCT_3, FUNCT_4, SEQFUNC; registrations SUBSET_1, RELSET_1, XXREAL_0, XREAL_0, NAT_1, RAT_1, MEMBERED, MEASURE1, VALUED_0, ORDINAL1, XXREAL_3; requirements NUMERALS, REAL, BOOLE, SUBSET, ARITHM; begin :: The Measurability of Real-valued Functions reserve X for non empty set, Y for set, S for SigmaField of X, F for sequence of S, f,g for PartFunc of X,REAL, A,B for Element of S, r,s for Real, a for Real, n for Nat; theorem :: MESFUNC6:1 |. R_EAL f .| = R_EAL abs f; theorem :: MESFUNC6:2 for X be non empty set, S be SigmaField of X, M be sigma_Measure of S, f be PartFunc of X,ExtREAL, r be Real st dom f in S & (for x be object st x in dom f holds f.x = r) holds f is_simple_func_in S; theorem :: MESFUNC6:3 for x be set holds x in less_dom(f,a) iff x in dom f & ex y being Real st y=f.x & y < a; theorem :: MESFUNC6:4 for x be set holds x in less_eq_dom(f,a) iff x in dom f & ex y being Real st y=f.x & y <= a; theorem :: MESFUNC6:5 for x be set holds x in great_dom(f,r) iff x in dom f & ex y being Real st y=f.x & r < y; theorem :: MESFUNC6:6 for x be set holds x in great_eq_dom(f,r) iff x in dom f & ex y being Real st y=f.x & r <= y; theorem :: MESFUNC6:7 for x be set holds x in eq_dom(f,r) iff x in dom f & ex y being Real st y=f.x & r= y; theorem :: MESFUNC6:8 (for n holds F.n = Y /\ great_dom(f,r-1/(n+1))) implies Y /\ great_eq_dom(f,r) = meet rng F; theorem :: MESFUNC6:9 (for n holds F.n = Y /\ less_dom(f,(r+1/(n+1)))) implies Y /\ less_eq_dom(f,r) = meet rng F; theorem :: MESFUNC6:10 (for n holds F.n = Y /\ less_eq_dom(f,r-1/(n+1))) implies Y /\ less_dom(f,r) = union rng F; theorem :: MESFUNC6:11 (for n holds F.n = Y /\ great_eq_dom(f,r+1/(n+1))) implies Y /\ great_dom(f,r) = union rng F; definition let X be non empty set; let S be SigmaField of X; let A be Element of S; let f be PartFunc of X,REAL; attr f is A-measurable means :: MESFUNC6:def 1 R_EAL f is A-measurable; end; theorem :: MESFUNC6:12 f is A-measurable iff for r being Real holds A /\ less_dom(f,r) in S; theorem :: MESFUNC6:13 A c= dom f implies (f is A-measurable iff for r being Real holds A /\ great_eq_dom(f,r) in S); theorem :: MESFUNC6:14 f is A-measurable iff for r being Real holds A /\ less_eq_dom(f,r) in S; theorem :: MESFUNC6:15 A c= dom f implies (f is A-measurable iff for r being Real holds A /\ great_dom(f,r) in S ); theorem :: MESFUNC6:16 B c= A & f is A-measurable implies f is B-measurable; theorem :: MESFUNC6:17 f is A-measurable & f is B-measurable implies f is (A\/B)-measurable; theorem :: MESFUNC6:18 f is A-measurable & A c= dom f implies A /\ great_dom(f,r) /\ less_dom(f,s) in S; theorem :: MESFUNC6:19 f is A-measurable & g is A-measurable & A c= dom g implies A /\ less_dom(f,r) /\ great_dom(g,r) in S; theorem :: MESFUNC6:20 R_EAL(r(#)f)=r(#)R_EAL f; theorem :: MESFUNC6:21 f is A-measurable & A c= dom f implies r(#)f is A-measurable; begin :: The Measurability of $f+g$ and $f-g$ for Real-valued Functions $f,g$ reserve X for non empty set, S for SigmaField of X, f,g for PartFunc of X,REAL, A for Element of S, r for Real, p for Rational; theorem :: MESFUNC6:22 R_EAL f is real-valued; theorem :: MESFUNC6:23 R_EAL(f+g)=R_EAL f + R_EAL g & R_EAL(f-g)=R_EAL f - R_EAL g & dom(R_EAL(f+g))= dom(R_EAL f) /\ dom(R_EAL g) & dom(R_EAL(f-g))= dom(R_EAL f) /\ dom(R_EAL g) & dom(R_EAL(f+g))= dom f /\ dom g & dom(R_EAL(f-g))= dom f /\ dom g; theorem :: MESFUNC6:24 for F be Function of RAT,S st (for p holds F.p = (A/\less_dom(f,p)) /\ (A/\less_dom(g,r-p))) holds A /\ less_dom(f+g,r) = union rng F; theorem :: MESFUNC6:25 f is A-measurable & g is A-measurable implies ex F being Function of RAT,S st for p being Rational holds F.p = (A /\ less_dom(f,p)) /\ ( A /\ less_dom(g,r-p)); theorem :: MESFUNC6:26 f is A-measurable & g is A-measurable implies f+g is A-measurable; theorem :: MESFUNC6:27 R_EAL f - R_EAL g = R_EAL f + R_EAL -g; theorem :: MESFUNC6:28 -R_EAL f = R_EAL((-1)(#)f) & -R_EAL f = R_EAL -f; theorem :: MESFUNC6:29 f is A-measurable & g is A-measurable & A c= dom g implies f-g is A-measurable; begin :: Basic Properties of Real-valued Functions, $\max_{+}f$ and $\max_{-}f$ reserve X for non empty set, f,g for PartFunc of X,REAL, r for Real ; theorem :: MESFUNC6:30 max+(R_EAL f) = max+f & max-(R_EAL f) = max-f; theorem :: MESFUNC6:31 for x being Element of X holds 0 <= (max+f).x; theorem :: MESFUNC6:32 for x being Element of X holds 0 <= (max-f).x; theorem :: MESFUNC6:33 max-f = max+(-f); theorem :: MESFUNC6:34 for x being set st x in dom f & 0 < max+f.x holds max-f.x = 0; theorem :: MESFUNC6:35 for x being set st x in dom f & 0 < max-f.x holds max+f.x = 0; theorem :: MESFUNC6:36 dom f = dom (max+f - max-f) & dom f = dom (max+f + max-f); theorem :: MESFUNC6:37 for x being set st x in dom f holds (max+f.x = f.x or max+f.x = 0) & ( max-f.x = -(f.x) or max-f.x = 0); theorem :: MESFUNC6:38 for x being set st x in dom f & max+f.x = f.x holds max-f.x = 0; theorem :: MESFUNC6:39 for x being set st x in dom f & max+f.x = 0 holds max-f.x = -(f.x); theorem :: MESFUNC6:40 for x being set st x in dom f & max-f.x = -(f.x) holds max+f.x = 0; theorem :: MESFUNC6:41 for x being set st x in dom f & max-f.x = 0 holds max+f.x = f.x; theorem :: MESFUNC6:42 f = max+f - max-f; theorem :: MESFUNC6:43 |.r qua Complex.| = |. r .|; theorem :: MESFUNC6:44 R_EAL(abs f) =|.R_EAL f.|; theorem :: MESFUNC6:45 abs f = max+f + max-f; begin :: The Measurability of $\max_{+}f, \max_{-}f$ and $|f|$ reserve X for non empty set, S for SigmaField of X, f,g for PartFunc of X,REAL, A for Element of S; theorem :: MESFUNC6:46 f is A-measurable implies max+f is A-measurable; theorem :: MESFUNC6:47 f is A-measurable & A c= dom f implies max-f is A-measurable; theorem :: MESFUNC6:48 f is A-measurable & A c= dom f implies abs f is A-measurable; begin :: The Definition and the Measurability of a Real-valued Simple Function reserve X for non empty set, Y for set, S for SigmaField of X, f,g,h for PartFunc of X,REAL, A for Element of S, r for Real; definition let X,S,f; pred f is_simple_func_in S means :: MESFUNC6:def 2 ex F being Finite_Sep_Sequence of S st (dom f = union rng F & for n being Nat,x,y being Element of X st n in dom F & x in F.n & y in F.n holds f.x = f.y); end; theorem :: MESFUNC6:49 f is_simple_func_in S iff R_EAL f is_simple_func_in S; theorem :: MESFUNC6:50 f is_simple_func_in S implies f is A-measurable; theorem :: MESFUNC6:51 for X being set, f being PartFunc of X,REAL holds f is nonnegative iff for x being object holds 0 <= f.x; theorem :: MESFUNC6:52 for X being set, f being PartFunc of X,REAL st for x being object st x in dom f holds 0 <= f.x holds f is nonnegative; theorem :: MESFUNC6:53 for X being set, f being PartFunc of X,REAL holds f is nonpositive iff for x being set holds f.x <= 0; theorem :: MESFUNC6:54 (for x being object st x in dom f holds f.x <= 0) implies f is nonpositive; theorem :: MESFUNC6:55 f is nonnegative implies f|Y is nonnegative; theorem :: MESFUNC6:56 f is nonnegative & g is nonnegative implies f+g is nonnegative; theorem :: MESFUNC6:57 f is nonnegative implies (0 <= r implies r(#)f is nonnegative) & (r <= 0 implies r(#)f is nonpositive); theorem :: MESFUNC6:58 (for x be set st x in dom f /\ dom g holds g.x <= f.x) implies f -g is nonnegative; theorem :: MESFUNC6:59 f is nonnegative & g is nonnegative & h is nonnegative implies f+g+h is nonnegative; theorem :: MESFUNC6:60 for x be object st x in dom(f+g+h) holds (f+g+h).x=f.x+g.x+h.x; theorem :: MESFUNC6:61 max+f is nonnegative & max-f is nonnegative; theorem :: MESFUNC6:62 dom(max+(f+g) + max-f) = dom f /\ dom g & dom(max-(f+g) + max+f) = dom f /\ dom g & dom(max+(f+g) + max-f + max-g) = dom f /\ dom g & dom(max-(f +g) + max+f + max+g) = dom f /\ dom g & max+(f+g) + max-f is nonnegative & max- (f+g) + max+f is nonnegative; theorem :: MESFUNC6:63 max+(f+g) + max-f + max-g = max-(f+g) + max+f + max+g; theorem :: MESFUNC6:64 0 <= r implies max+(r(#)f) = r(#)max+f & max-(r(#)f) = r(#)max-f; theorem :: MESFUNC6:65 0 <= r implies max+((-r)(#)f) = r(#)max-f & max-((-r)(#)f) = r(#)max+f; theorem :: MESFUNC6:66 max+(f|Y)=max+f|Y & max-(f|Y)=max-f|Y; theorem :: MESFUNC6:67 Y c= dom(f+g) implies dom((f+g)|Y) =Y & dom(f|Y+g|Y)=Y & (f+g)|Y = f|Y +g|Y; theorem :: MESFUNC6:68 eq_dom(f,r) = f"{r}; begin :: Lemmas for a Real-valued Measurable Function and a Simple Function reserve X for non empty set, S for SigmaField of X, f,g for PartFunc of X,REAL , A,B for Element of S, r,s for Real; theorem :: MESFUNC6:69 f is A-measurable & A c= dom f implies A /\ great_eq_dom(f,r) /\ less_dom(f,s) in S; theorem :: MESFUNC6:70 f is_simple_func_in S implies f|A is_simple_func_in S; theorem :: MESFUNC6:71 f is_simple_func_in S implies dom f is Element of S; theorem :: MESFUNC6:72 f is_simple_func_in S & g is_simple_func_in S implies f+g is_simple_func_in S ; theorem :: MESFUNC6:73 f is_simple_func_in S implies r(#)f is_simple_func_in S; theorem :: MESFUNC6:74 (for x be set st x in dom(f-g) holds g.x <= f.x) implies f-g is nonnegative; theorem :: MESFUNC6:75 ex f be PartFunc of X,REAL st f is_simple_func_in S & dom f = A & for x be object st x in A holds f.x=r; theorem :: MESFUNC6:76 f is B-measurable & A = dom f /\ B implies f|B is A-measurable; theorem :: MESFUNC6:77 A c= dom f & f is A-measurable & g is A-measurable implies max+( f+g) + max-f is A-measurable; theorem :: MESFUNC6:78 A c= dom f /\ dom g & f is A-measurable & g is A-measurable implies max-(f+g) + max+f is A-measurable; theorem :: MESFUNC6:79 dom f in S & dom g in S implies dom(f+g) in S; theorem :: MESFUNC6:80 dom f = A implies (f is B-measurable iff f is (A/\B)-measurable); theorem :: MESFUNC6:81 ( ex A be Element of S st dom f = A ) implies for c be Real, B be Element of S st f is B-measurable holds c(#)f is B-measurable; begin :: The Integral of a Real-valued Function reserve X for non empty set, S for SigmaField of X, M for sigma_Measure of S, f,g for PartFunc of X,REAL, r for Real, E,A,B for Element of S; definition let X be non empty set; let S be SigmaField of X; let M be sigma_Measure of S; let f be PartFunc of X,REAL; func Integral(M,f) -> Element of ExtREAL equals :: MESFUNC6:def 3 Integral(M,R_EAL f); end; theorem :: MESFUNC6:82 (ex A be Element of S st A = dom f & f is A-measurable) & f is nonnegative implies Integral(M,f) = integral+(M,R_EAL f); theorem :: MESFUNC6:83 f is_simple_func_in S & f is nonnegative implies Integral(M,f) = integral+(M,R_EAL f) & Integral(M,f) = integral'(M,R_EAL f); theorem :: MESFUNC6:84 (ex A be Element of S st A = dom f & f is A-measurable) & f is nonnegative implies 0 <= Integral(M,f); theorem :: MESFUNC6:85 (ex E be Element of S st E = dom f & f is E-measurable) & f is nonnegative & A misses B implies Integral(M,f|(A\/B)) = Integral(M,f|A)+ Integral(M,f|B); theorem :: MESFUNC6:86 (ex E be Element of S st E = dom f & f is E-measurable) & f is nonnegative implies 0<= Integral(M,f|A); theorem :: MESFUNC6:87 (ex E be Element of S st E = dom f & f is E-measurable ) & f is nonnegative & A c= B implies Integral(M,f|A) <= Integral(M,f|B); theorem :: MESFUNC6:88 (ex E be Element of S st E = dom f & f is E-measurable) & M.A = 0 implies Integral(M,f|A)=0; theorem :: MESFUNC6:89 E = dom f & f is E-measurable & M.A =0 implies Integral(M,f|(E\A)) = Integral(M,f); definition let X be non empty set; let S be SigmaField of X; let M be sigma_Measure of S; let f be PartFunc of X,REAL; pred f is_integrable_on M means :: MESFUNC6:def 4 R_EAL f is_integrable_on M; end; theorem :: MESFUNC6:90 f is_integrable_on M implies -infty < Integral(M,f) & Integral(M,f) < +infty; theorem :: MESFUNC6:91 f is_integrable_on M implies f|A is_integrable_on M; theorem :: MESFUNC6:92 f is_integrable_on M & A misses B implies Integral(M,f|(A\/B)) = Integral(M,f|A) + Integral(M,f|B); theorem :: MESFUNC6:93 f is_integrable_on M & B = (dom f)\A implies f|A is_integrable_on M & Integral(M,f) = Integral(M,f|A)+Integral(M,f|B); theorem :: MESFUNC6:94 (ex A be Element of S st A = dom f & f is A-measurable ) implies (f is_integrable_on M iff abs f is_integrable_on M); theorem :: MESFUNC6:95 f is_integrable_on M implies |. Integral(M,f).| <= Integral(M,abs f); theorem :: MESFUNC6:96 ( ex A be Element of S st A = dom f & f is A-measurable ) & dom f = dom g & g is_integrable_on M & ( for x be Element of X st x in dom f holds |.f.x qua Complex.| <= g.x ) implies f is_integrable_on M & Integral(M,abs f) <= Integral(M,g); theorem :: MESFUNC6:97 dom f in S & 0 <= r & (for x be object st x in dom f holds f.x = r) implies Integral(M,f) = r * M.(dom f); theorem :: MESFUNC6:98 f is_integrable_on M & g is_integrable_on M & f is nonnegative & g is nonnegative implies f+g is_integrable_on M; theorem :: MESFUNC6:99 f is_integrable_on M & g is_integrable_on M implies dom (f+g) in S; theorem :: MESFUNC6:100 f is_integrable_on M & g is_integrable_on M implies f+g is_integrable_on M; theorem :: MESFUNC6:101 f is_integrable_on M & g is_integrable_on M implies ex E be Element of S st E = dom f /\ dom g & Integral(M,f+g)=Integral(M,f|E)+Integral(M,g|E); theorem :: MESFUNC6:102 f is_integrable_on M implies r(#)f is_integrable_on M & Integral(M,r (#)f) = r * Integral(M,f); definition let X be non empty set; let S be SigmaField of X; let M be sigma_Measure of S; let f be PartFunc of X,REAL; let B be Element of S; func Integral_on(M,B,f) -> Element of ExtREAL equals :: MESFUNC6:def 5 Integral(M,f|B); end; theorem :: MESFUNC6:103 f is_integrable_on M & g is_integrable_on M & B c= dom(f+g) implies f+ g is_integrable_on M & Integral_on(M,B,f+g) = Integral_on(M,B,f) + Integral_on( M,B,g); theorem :: MESFUNC6:104 f is_integrable_on M implies f|B is_integrable_on M & Integral_on(M,B, r(#)f) = r * Integral_on(M,B,f);