:: The Measurability of Complex-Valued Functional Sequences :: by Keiko Narita , Noboru Endou and Yasunari Shidama :: :: Received December 16, 2008 :: Copyright (c) 2008-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, XBOOLE_0, PROB_1, MEASURE1, PARTFUN1, REAL_1, SUBSET_1, SEQFUNC, MEASURE6, RELAT_1, FUNCT_1, PBOOLE, TARSKI, SEQ_1, ORDINAL2, RINFSUP1, MESFUNC8, CARD_1, NAT_1, MESFUNC1, ARYTM_3, SEQ_2, XXREAL_0, XXREAL_2, SETFAM_1, COMSEQ_1, COMPLEX1, VALUED_1, SUPINF_2, POWER, ARYTM_1, MESFUNC5, INTEGRA5, MESFUNC2, FINSEQ_1, MESFUNC3, INT_1, ZFMISC_1, XCMPLX_0, FUNCT_7; notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XXREAL_3, XCMPLX_0, COMPLEX1, XXREAL_0, XREAL_0, XXREAL_2, REAL_1, NAT_1, NAT_D, PROB_1, RELAT_1, FUNCT_1, RELSET_1, PARTFUN1, FINSEQ_1, RFUNCT_3, VALUED_1, FUNCT_2, SETFAM_1, SUPINF_1, SUPINF_2, SEQ_1, SEQ_2, SEQFUNC, COMSEQ_1, COMSEQ_2, RINFSUP1, RINFSUP2, MEASURE1, MEASURE6, EXTREAL1, MESFUNC1, MESFUNC2, MESFUNC5, MESFUNC6, COMSEQ_3, MESFUN6C, MESFUNC8, SEQ_4, COMPLSP2; constructors REAL_1, SQUARE_1, MEASURE6, EXTREAL1, MESFUNC2, MESFUNC3, MESFUNC5, MESFUNC6, MESFUN6C, BINOP_2, RINFSUP1, MESFUNC8, COMSEQ_2, COMSEQ_3, SUPINF_1, RINFSUP2, SEQFUNC, MESFUNC1, COMPLSP2, MATRIX_5, NAT_D, RELSET_1, SEQ_4; registrations NAT_1, MESFUNC8, SUBSET_1, ORDINAL1, NUMBERS, XXREAL_0, XREAL_0, MEMBERED, VALUED_0, XCMPLX_0, PARTFUN1, FUNCT_2, RELAT_1, SEQ_2, COMSEQ_3, RELSET_1, XXREAL_3; requirements NUMERALS, REAL, BOOLE, SUBSET, ARITHM; begin :: Real-valued Functional Sequences reserve X for non empty set, Y for set, S for SigmaField of X, M for sigma_Measure of S, f,g for PartFunc of X,COMPLEX, r for Real, k for Real, n for Nat, E for Element of S; definition let X be non empty set; let f be Functional_Sequence of X,REAL; func R_EAL f -> Functional_Sequence of X,ExtREAL equals :: MESFUN7C:def 1 f; end; theorem :: MESFUN7C:1 for X be non empty set, f be Functional_Sequence of X,REAL, x be Element of X holds f#x = (R_EAL f)#x; registration let X be non empty set, f be Function of X,REAL; cluster R_EAL f -> total; end; definition let X be non empty set, f be Functional_Sequence of X,REAL; func inf f -> PartFunc of X,ExtREAL equals :: MESFUN7C:def 2 inf R_EAL f; end; theorem :: MESFUN7C:2 for X being non empty set, f being Functional_Sequence of X,REAL holds for x be Element of X st x in dom inf f holds (inf f).x = inf rng R_EAL(f #x); definition let X be non empty set, f be Functional_Sequence of X,REAL; func sup f -> PartFunc of X,ExtREAL equals :: MESFUN7C:def 3 sup R_EAL f; end; theorem :: MESFUN7C:3 for X being non empty set, f being Functional_Sequence of X,REAL holds for x be Element of X st x in dom sup f holds (sup f).x = sup rng R_EAL(f #x); definition let X be non empty set, f be Functional_Sequence of X,REAL; func inferior_realsequence f -> with_the_same_dom Functional_Sequence of X, ExtREAL equals :: MESFUN7C:def 4 inferior_realsequence R_EAL f; end; theorem :: MESFUN7C:4 for X be non empty set, f being Functional_Sequence of X,REAL, n being Nat holds dom((inferior_realsequence f).n) = dom(f.0) & for x be Element of X st x in dom((inferior_realsequence f).n) holds (( inferior_realsequence f).n).x=(inferior_realsequence R_EAL(f#x)).n; definition let X be non empty set, f be Functional_Sequence of X,REAL; func superior_realsequence f -> with_the_same_dom Functional_Sequence of X, ExtREAL equals :: MESFUN7C:def 5 superior_realsequence R_EAL f; end; theorem :: MESFUN7C:5 for X be non empty set, f being Functional_Sequence of X,REAL, n being Nat holds dom((superior_realsequence f).n) = dom(f.0) & for x be Element of X st x in dom((superior_realsequence f).n) holds (( superior_realsequence f).n).x=(superior_realsequence R_EAL(f#x)).n; theorem :: MESFUN7C:6 for f be Functional_Sequence of X,REAL, x be Element of X st x in dom( f.0) holds (inferior_realsequence f)#x = inferior_realsequence R_EAL(f#x); registration let X be non empty set, f be with_the_same_dom Functional_Sequence of X,REAL; cluster R_EAL f -> with_the_same_dom; end; theorem :: MESFUN7C:7 for X be non empty set, f be with_the_same_dom Functional_Sequence of X,REAL for S be SigmaField of X, E be Element of S, n be Nat st f.n is E-measurable holds (R_EAL f).n is E-measurable; theorem :: MESFUN7C:8 for X be non empty set, f being Functional_Sequence of X,REAL, n being Nat holds (R_EAL f)^\n = R_EAL(f^\n); theorem :: MESFUN7C:9 for f be with_the_same_dom Functional_Sequence of X,REAL, n be Nat holds (inferior_realsequence f).n = inf(f^\n); theorem :: MESFUN7C:10 for f be with_the_same_dom Functional_Sequence of X,REAL, n be Nat holds (superior_realsequence f).n = sup(f^\n); theorem :: MESFUN7C:11 for f be Functional_Sequence of X,REAL, x be Element of X st x in dom(f.0) holds (superior_realsequence f)#x = superior_realsequence R_EAL(f#x ); definition let X be non empty set, f be Functional_Sequence of X,REAL; func lim_inf f -> PartFunc of X,ExtREAL equals :: MESFUN7C:def 6 lim_inf R_EAL f; end; theorem :: MESFUN7C:12 for X be non empty set, f be Functional_Sequence of X,REAL holds for x be Element of X st x in dom lim_inf f holds (lim_inf f).x = lim_inf R_EAL (f#x); definition let X be non empty set, f be Functional_Sequence of X,REAL; func lim_sup f -> PartFunc of X,ExtREAL equals :: MESFUN7C:def 7 lim_sup R_EAL f; end; theorem :: MESFUN7C:13 for X be non empty set, f be Functional_Sequence of X,REAL holds for x be Element of X st x in dom lim_sup f holds (lim_sup f).x = lim_sup R_EAL (f#x); definition let X be non empty set, f be Functional_Sequence of X,REAL; func lim f -> PartFunc of X,ExtREAL equals :: MESFUN7C:def 8 lim R_EAL f; end; theorem :: MESFUN7C:14 for X be non empty set, f be Functional_Sequence of X,REAL holds for x be Element of X st x in dom lim f holds (lim f).x=lim R_EAL(f#x); theorem :: MESFUN7C:15 for f be Functional_Sequence of X,REAL, x be Element of X st x in dom lim f & f#x is convergent holds (lim f).x= (lim_sup f).x & (lim f).x = ( lim_inf f).x; theorem :: MESFUN7C:16 for f be with_the_same_dom Functional_Sequence of X,REAL, F be SetSequence of S, r be Real st (for n be Nat holds F.n = dom( f.0) /\ great_dom(f.n,r)) holds union rng F = dom(f.0) /\ great_dom(sup f,r); theorem :: MESFUN7C:17 for f be with_the_same_dom Functional_Sequence of X,REAL, F be SetSequence of S, r be Real st (for n be Nat holds F.n = dom( f.0) /\ great_eq_dom(f.n,r)) holds meet rng F = dom(f.0) /\ great_eq_dom(inf f, r); theorem :: MESFUN7C:18 for f be with_the_same_dom Functional_Sequence of X,REAL, E be Element of S st dom (f.0) = E & (for n be Nat holds f.n is E-measurable) holds lim_sup f is E-measurable; theorem :: MESFUN7C:19 for f be with_the_same_dom Functional_Sequence of X,REAL, E be Element of S st dom(f.0) = E & (for n be Nat holds f.n is E-measurable) holds lim_inf f is E-measurable; theorem :: MESFUN7C:20 for f be Functional_Sequence of X,REAL, x be Element of X st x in dom (f.0) & f#x is convergent holds (superior_realsequence f)#x is bounded_below; theorem :: MESFUN7C:21 for f be with_the_same_dom Functional_Sequence of X,REAL, E be Element of S st dom(f.0) = E & (for n be Nat holds f.n is E-measurable) & (for x be Element of X st x in E holds f#x is convergent) holds lim f is E-measurable; theorem :: MESFUN7C:22 for f be with_the_same_dom Functional_Sequence of X,REAL, g be PartFunc of X,ExtREAL, E be Element of S st dom(f.0) = E & (for n be Nat holds f.n is E-measurable) & dom g = E & for x be Element of X st x in E holds f#x is convergent & g.x = lim(f#x) holds g is E-measurable; begin :: The Measurability of Complex-valued Functional Sequences definition let X be non empty set, H be Functional_Sequence of X,COMPLEX, x be Element of X; func H#x -> Complex_Sequence means :: MESFUN7C:def 9 for n be Nat holds it.n = (H.n).x; end; definition let X be non empty set, f be Functional_Sequence of X,COMPLEX; func lim f -> PartFunc of X,COMPLEX means :: MESFUN7C:def 10 dom it = dom (f.0) & for x be Element of X st x in dom it holds it.x=lim(f#x); end; definition let X be non empty set; let f be Functional_Sequence of X,COMPLEX; func Re f -> Functional_Sequence of X,REAL means :: MESFUN7C:def 11 for n be Nat holds dom(it.n) = dom(f.n) & for x be Element of X st x in dom(it.n) holds (it.n).x = (Re(f#x)).n; end; registration let X be non empty set; let f be with_the_same_dom Functional_Sequence of X,COMPLEX; cluster Re f -> with_the_same_dom; end; definition let X be non empty set; let f be Functional_Sequence of X,COMPLEX; func Im f -> Functional_Sequence of X,REAL means :: MESFUN7C:def 12 for n be Nat holds dom(it.n) = dom(f.n) & for x be Element of X st x in dom(it.n) holds (it.n).x = (Im(f#x)).n; end; registration let X be non empty set; let f be with_the_same_dom Functional_Sequence of X,COMPLEX; cluster Im f -> with_the_same_dom; end; theorem :: MESFUN7C:23 for f be with_the_same_dom Functional_Sequence of X,COMPLEX, x be Element of X st x in dom (f.0) holds (Re f)#x = Re(f#x) & (Im f)#x = Im(f#x) ; theorem :: MESFUN7C:24 for f be Functional_Sequence of X,COMPLEX, n be Nat holds (Re f).n = Re(f.n) & (Im f).n = Im(f.n); theorem :: MESFUN7C:25 for f be with_the_same_dom Functional_Sequence of X,COMPLEX st ( for x be Element of X st x in dom(f.0) holds f#x is convergent) holds lim Re f = Re lim f & lim Im f = Im lim f; theorem :: MESFUN7C:26 for f be with_the_same_dom Functional_Sequence of X,COMPLEX, E be Element of S st dom(f.0) = E & (for n be Nat holds f.n is E-measurable) & (for x be Element of X st x in E holds f#x is convergent) holds lim f is E-measurable; theorem :: MESFUN7C:27 for f be with_the_same_dom Functional_Sequence of X,COMPLEX, g be PartFunc of X,COMPLEX, E be Element of S st dom(f.0) = E & (for n be Nat holds f.n is E-measurable) & dom g = E & for x be Element of X st x in E holds f#x is convergent & g.x = lim(f#x) holds g is E-measurable; begin :: Selected Properties of Complex-valued Measurable Functions theorem :: MESFUN7C:28 (r(#)f)|Y = r(#)(f|Y); theorem :: MESFUN7C:29 0 <= k & E c= dom f & f is E-measurable implies |.f.| to_power k is E-measurable; theorem :: MESFUN7C:30 for f,g be PartFunc of X,REAL holds (R_EAL f)(#)(R_EAL g) = R_EAL(f(#)g); theorem :: MESFUN7C:31 for f,g be PartFunc of X,REAL st dom f /\ dom g = E & f is E-measurable & g is E-measurable holds f(#)g is E-measurable; theorem :: MESFUN7C:32 Re(f(#)g) = Re(f)(#)Re(g) - Im(f)(#)Im(g) & Im(f(#)g) = Im(f)(#) Re(g) + Re(f)(#)Im(g); theorem :: MESFUN7C:33 dom f /\ dom g = E & f is E-measurable & g is E-measurable implies f(#)g is E-measurable; theorem :: MESFUN7C:34 for f,g be PartFunc of X,REAL st (ex E be Element of S st E = dom f & E= dom g & f is E-measurable & g is E-measurable) & f is nonnegative & g is nonnegative & (for x be Element of X st x in dom g holds g.x <= f.x) holds Integral(M,g) <= Integral(M,f); theorem :: MESFUN7C:35 :: MESFUN6C:31 for X be non empty set, S be SigmaField of X, M be sigma_Measure of S, f be PartFunc of X,COMPLEX st f is_integrable_on M holds (ex A be Element of S st A = dom f & f is A-measurable) & |.f.| is_integrable_on M; theorem :: MESFUN7C:36 f is_integrable_on M implies ex F be sequence of S st (for n be Nat holds F.n = dom f /\ great_eq_dom(|.f.|, (1/(n+1)))) & dom f \ eq_dom( |.f.|,0) = union rng F & for n be Nat holds F.n in S & M.(F.n) <+infty; reserve x,A for set; theorem :: MESFUN7C:37 (|.f.|)|A = |. f|A .|; theorem :: MESFUN7C:38 dom(|.f.|+|.g.|) = dom f /\ dom g & dom |.f+g.| c= dom |.f.|; theorem :: MESFUN7C:39 (|.f.|)|(dom |.f+g.|) + (|.g.|)|(dom |.f+g.|) = (|.f.|+|.g.|)|( dom |.f+g.|); theorem :: MESFUN7C:40 x in dom |.f+g.| implies (|.f+g.|).x <= (|.f.|+|.g.|).x; theorem :: MESFUN7C:41 for f,g be PartFunc of X,REAL st (for x be set st x in dom f holds f.x <= g.x) holds g-f is nonnegative; theorem :: MESFUN7C:42 f is_integrable_on M & g is_integrable_on M implies ex E be Element of S st E = dom(f+g) & Integral(M,(|.f+g.|)|E) <= Integral(M,(|.f.|)|E) + Integral (M,(|.g.|)|E); begin :: Properties of Complex-valued Simple Functions definition let X be non empty set; let S be SigmaField of X; let f be PartFunc of X,COMPLEX; pred f is_simple_func_in S means :: MESFUN7C:def 13 ex F being Finite_Sep_Sequence of S st dom f = union rng F & for n being Nat,x,y being Element of X st n in dom F & x in F.n & y in F.n holds f.x = f.y; end; definition let X be non empty set; let S be SigmaField of X; let f be PartFunc of X,REAL; let F be Finite_Sep_Sequence of S; let a be FinSequence of REAL; pred F,a are_Re-presentation_of f means :: MESFUN7C:def 14 dom f = union rng F & dom F = dom a & for n be Nat st n in dom F for x be set st x in F.n holds f.x=a.n; end; definition let X,S,f; let F be Finite_Sep_Sequence of S; let a be FinSequence of COMPLEX; pred F,a are_Re-presentation_of f means :: MESFUN7C:def 15 dom f = union rng F & dom F = dom a & for n be Nat st n in dom F for x be set st x in F.n holds f.x=a.n; end; theorem :: MESFUN7C:43 f is_simple_func_in S iff Re f is_simple_func_in S & Im f is_simple_func_in S ; theorem :: MESFUN7C:44 f is_simple_func_in S implies ex F be Finite_Sep_Sequence of S, a be FinSequence of COMPLEX st dom f = union rng F & dom F= dom a & for n be Nat st n in dom F for x be set st x in F.n holds f.x = a.n; theorem :: MESFUN7C:45 f is_simple_func_in S iff ex F be Finite_Sep_Sequence of S, a be FinSequence of COMPLEX st F,a are_Re-presentation_of f; reserve c for FinSequence of COMPLEX; theorem :: MESFUN7C:46 for n be Nat st n in dom Re c holds (Re c).n = Re(c.n); theorem :: MESFUN7C:47 for n be Nat st n in dom Im c holds (Im c).n = Im(c.n); theorem :: MESFUN7C:48 for F be Finite_Sep_Sequence of S, a be FinSequence of COMPLEX holds F,a are_Re-presentation_of f iff F,Re a are_Re-presentation_of Re f & F, Im a are_Re-presentation_of Im f; theorem :: MESFUN7C:49 f is_simple_func_in S iff ex F be Finite_Sep_Sequence of S, c be FinSequence of COMPLEX st dom f = union rng F & dom F = dom c & (for n be Nat st n in dom F for x be set st x in F.n holds (Re f).x = Re c.n) & for n be Nat st n in dom F for x be set st x in F.n holds (Im f).x = Im c.n;