:: Integral of Complex-Valued Measurable Function :: by Keiko Narita , Noboru Endou and Yasunari Shidama :: :: Received July 30, 2008 :: Copyright (c) 2008-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, MEASURE6, ARYTM_3, ARYTM_1, RELAT_1, REAL_1, XBOOLE_0, PARTFUN1, COMPLEX1, SUBSET_1, FUNCT_1, PROB_1, MEASURE1, XCMPLX_0, MESFUNC1, VALUED_1, CARD_1, TARSKI, INTEGRA5, MESFUNC5, XXREAL_0, RFUNCT_3, SUPINF_2, POWER, SQUARE_1, PREPOWER; notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XXREAL_0, XXREAL_3, XCMPLX_0, XREAL_0, COMPLEX1, REAL_1, RELAT_1, FUNCT_1, RELSET_1, PARTFUN1, VALUED_1, SUPINF_2, PREPOWER, POWER, SQUARE_1, MEASURE6, MEASURE1, EXTREAL1, COMSEQ_3, VALUED_0, MESFUNC1, MESFUNC2, PROB_1, MESFUNC5, MESFUNC6; constructors REAL_1, PREPOWER, POWER, SQUARE_1, COMPLEX1, MEASURE6, EXTREAL1, MESFUNC1, MESFUNC2, MESFUNC5, MESFUNC6, SUPINF_1, RELSET_1, ABIAN, BINOP_2, VALUED_0, COMSEQ_3; registrations XBOOLE_0, SUBSET_1, NUMBERS, XXREAL_0, XREAL_0, MEMBERED, MEASURE1, VALUED_0, XCMPLX_0, RELAT_1, FUNCT_1, RELSET_1, SQUARE_1, ORDINAL1, XXREAL_3; requirements NUMERALS, REAL, BOOLE, SUBSET, ARITHM; begin :: Definitions for Complex-valued Functions theorem :: MESFUN6C:1 for a,b be Real holds a + b = a+b & - a = -a & a - b = a-b & a * b = a*b; begin :: The Measurability of Complex-valued Functions reserve X for non empty set, Y for set, S for SigmaField of X, M for sigma_Measure of S, f,g for PartFunc of X,COMPLEX, r for Real, c for Complex, E,A,B for Element of S; definition let X be non empty set; let S be SigmaField of X; let E be Element of S; let f be PartFunc of X,COMPLEX; attr f is E-measurable means :: MESFUN6C:def 1 Re f is E-measurable & Im f is E-measurable; end; theorem :: MESFUN6C:2 r(#)(Re f) = Re(r(#)f) & r(#)(Im f) = Im(r(#)f); theorem :: MESFUN6C:3 Re(c(#)f) = (Re c)(#)(Re f) - (Im c)(#)(Im f) & Im(c(#)f) = (Im c )(#)(Re f) + (Re c)(#)(Im f); theorem :: MESFUN6C:4 -(Im f) = Re((#)f) & Re f = Im((#)f); theorem :: MESFUN6C:5 Re(f+g) = Re f + Re g & Im(f+g) = Im f + Im g; theorem :: MESFUN6C:6 Re(f-g) = Re f - Re g & Im(f-g) = Im f - Im g; theorem :: MESFUN6C:7 :: MESFUNC7:2 (Re f)|A = Re(f|A) & (Im f)|A = Im(f|A); theorem :: MESFUN6C:8 f = Re f + (#)(Im f); theorem :: MESFUN6C:9 B c= A & f is A-measurable implies f is B-measurable; theorem :: MESFUN6C:10 f is A-measurable & f is B-measurable implies f is (A\/B)-measurable; theorem :: MESFUN6C:11 f is A-measurable & g is A-measurable implies f+g is A-measurable; theorem :: MESFUN6C:12 f is A-measurable & g is A-measurable & A c= dom g implies f-g is A-measurable; theorem :: MESFUN6C:13 Y c= dom(f+g) implies dom(f|Y+g|Y)=Y & (f+g)|Y = f|Y+g|Y; theorem :: MESFUN6C:14 f is B-measurable & A = dom f /\ B implies f|B is A-measurable; theorem :: MESFUN6C:15 dom f in S & dom g in S implies dom(f+g) in S; theorem :: MESFUN6C:16 dom f = A implies (f is B-measurable iff f is (A/\B)-measurable); theorem :: MESFUN6C:17 f is A-measurable & A c= dom f implies c(#)f is A-measurable; theorem :: MESFUN6C:18 ( ex A be Element of S st dom f = A ) implies for c be Complex, B be Element of S st f is B-measurable holds c(#)f is B-measurable; begin :: The Integral of a Complex-valued Measurable Function definition let X be non empty set; let S be SigmaField of X; let M be sigma_Measure of S; let f be PartFunc of X,COMPLEX; pred f is_integrable_on M means :: MESFUN6C:def 2 Re f is_integrable_on M & Im f is_integrable_on M; end; definition let X be non empty set; let S be SigmaField of X; let M be sigma_Measure of S; let f be PartFunc of X,COMPLEX; assume f is_integrable_on M; func Integral(M,f) -> Complex means :: MESFUN6C:def 3 ex R,I be Real st R = Integral(M,Re f) & I = Integral(M,Im f) & it = R+ I*; end; theorem :: MESFUN6C:19 for X be non empty set, S be SigmaField of X, M be sigma_Measure of S, f be PartFunc of X,ExtREAL, A be Element of S st (ex E be Element of S st E = dom f & f is E-measurable) & M.A = 0 holds f|A is_integrable_on M; theorem :: MESFUN6C:20 for X be non empty set, S be SigmaField of X, M be sigma_Measure of S, f be PartFunc of X,REAL, E,A be Element of S st (ex E be Element of S st E = dom f & f is E-measurable) & M.A = 0 holds f|A is_integrable_on M; theorem :: MESFUN6C:21 (ex E be Element of S st E = dom f & f is E-measurable) & M.A = 0 implies f|A is_integrable_on M & Integral(M,f|A) = 0; theorem :: MESFUN6C:22 E = dom f & f is_integrable_on M & M.A =0 implies Integral(M,f|(E\A)) = Integral(M,f); theorem :: MESFUN6C:23 f is_integrable_on M implies f|A is_integrable_on M; theorem :: MESFUN6C:24 f is_integrable_on M & A misses B implies Integral(M,f|(A\/B)) = Integral(M,f|A) + Integral(M,f|B); theorem :: MESFUN6C:25 f is_integrable_on M & B = (dom f)\A implies f|A is_integrable_on M & Integral(M,f) = Integral(M,f|A)+Integral(M,f|B); definition let k be Real, X be non empty set, f be PartFunc of X,REAL; func f to_power k -> PartFunc of X,REAL means :: MESFUN6C:def 4 dom it = dom f & for x be Element of X st x in dom it holds it.x = (f.x) to_power k; end; registration let X; cluster nonnegative for PartFunc of X,REAL; end; registration let k be non negative Real, X; let f be nonnegative PartFunc of X,REAL; cluster f to_power k -> nonnegative; end; theorem :: MESFUN6C:26 for k be Real, X,S,E for f be PartFunc of X,REAL st f is nonnegative & 0 <= k holds (f to_power k) is nonnegative; theorem :: MESFUN6C:27 for x be object,X,S,E for f be PartFunc of X,REAL st f is nonnegative holds (f.x) to_power (1/2) = sqrt(f.x); theorem :: MESFUN6C:28 for f be PartFunc of X,REAL, a be Real st A c= dom f holds A /\ less_dom(f,a) = A\(A /\ great_eq_dom(f,a)); theorem :: MESFUN6C:29 for k be Real, X,S,E for f be PartFunc of X,REAL st f is nonnegative & 0 <= k & E c= dom f & f is E-measurable holds (f to_power k) is E-measurable; theorem :: MESFUN6C:30 f is A-measurable & A c= dom f implies |.f.| is A-measurable; theorem :: MESFUN6C:31 (ex A be Element of S st A = dom f & f is A-measurable ) implies (f is_integrable_on M iff |.f.| is_integrable_on M); theorem :: MESFUN6C:32 f is_integrable_on M & g is_integrable_on M implies dom (f+g) in S; theorem :: MESFUN6C:33 f is_integrable_on M & g is_integrable_on M implies f+g is_integrable_on M; theorem :: MESFUN6C:34 for X be non empty set, S be SigmaField of X, M be sigma_Measure of S, f,g be PartFunc of X,REAL st f is_integrable_on M & g is_integrable_on M holds f-g is_integrable_on M; theorem :: MESFUN6C:35 f is_integrable_on M & g is_integrable_on M implies f-g is_integrable_on M; theorem :: MESFUN6C:36 f is_integrable_on M & g is_integrable_on M implies ex E be Element of S st E = dom f /\ dom g & Integral(M,f+g)=Integral(M,f|E)+Integral(M ,g|E); theorem :: MESFUN6C:37 for X be non empty set, S be SigmaField of X, M be sigma_Measure of S, f,g be PartFunc of X,REAL st f is_integrable_on M & g is_integrable_on M holds ex E be Element of S st E = dom f /\ dom g & Integral(M,f-g)=Integral(M,f|E)+ Integral(M,(-g)|E); theorem :: MESFUN6C:38 f is_integrable_on M implies r(#)f is_integrable_on M & Integral (M,r(#)f) = r * Integral(M,f); theorem :: MESFUN6C:39 f is_integrable_on M implies (#)f is_integrable_on M & Integral(M,(#)f) = * Integral(M,f); theorem :: MESFUN6C:40 f is_integrable_on M implies c(#)f is_integrable_on M & Integral (M,c(#)f) = c * Integral(M,f); theorem :: MESFUN6C:41 for f be PartFunc of X,REAL,Y,r holds (r(#)f)|Y = r(#)(f|Y); theorem :: MESFUN6C:42 for f,g be PartFunc of X,REAL st ( ex A be Element of S st A = dom f /\ dom g & f is A-measurable & g is A-measurable ) & f is_integrable_on M & g is_integrable_on M & g-f is nonnegative holds ex E be Element of S st E = dom f /\ dom g & Integral(M,f|E) <= Integral(M,g|E); theorem :: MESFUN6C:43 ( ex A be Element of S st A = dom f & f is A-measurable ) & f is_integrable_on M implies |. Integral(M,f).| <= Integral(M,|.f.|); definition let X be non empty set; let S be SigmaField of X; let M be sigma_Measure of S; let f be PartFunc of X,COMPLEX; let B be Element of S; func Integral_on(M,B,f) -> Complex equals :: MESFUN6C:def 5 Integral(M,f|B); end; theorem :: MESFUN6C:44 f is_integrable_on M & g is_integrable_on M & B c= dom(f+g) implies f+ g is_integrable_on M & Integral_on(M,B,f+g) = Integral_on(M,B,f) + Integral_on( M,B,g); theorem :: MESFUN6C:45 f is_integrable_on M implies Integral_on(M,B,c(#)f) = c * Integral_on( M,B,f) ; begin :: Several Properties of Real-valued Measurable Functions reserve f for PartFunc of X,REAL, a for Real; theorem :: MESFUN6C:46 for f be PartFunc of X,REAL, a be Real st A c= dom f holds A /\ great_eq_dom(f,a) = A\(A /\ less_dom(f,a)); theorem :: MESFUN6C:47 for f be PartFunc of X,REAL, a be Real st A c= dom f holds A /\ great_dom(f,a) = A\(A /\ less_eq_dom(f,a)); theorem :: MESFUN6C:48 for f be PartFunc of X,REAL, a be Real st A c= dom f holds A /\ less_eq_dom(f,a) = A\(A /\ great_dom(f,a)); theorem :: MESFUN6C:49 A /\ eq_dom(f,a) = A /\ great_eq_dom(f,a) /\ less_eq_dom(f,a);