:: Fubini's Theorem :: by Noboru Endou :: :: Received March 11, 2019 :: Copyright (c) 2019-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, XXREAL_0, SUBSET_1, CARD_1, ARYTM_3, ARYTM_1, RELAT_1, REAL_1, FUNCT_1, XBOOLE_0, TARSKI, ZFMISC_1, PROB_1, SUPINF_2, VALUED_0, PARTFUN1, MEASURE1, MESFUNC5, MESFUNC1, MEASUR10, FUNCT_3, MEASUR11, COMPLEX1, MESFUN12, RFUNCT_3, INTEGRA5, MESFUN13, MEASURE6, LPSPACE1; notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, XXREAL_3, XXREAL_0, XREAL_0, NUMBERS, RELAT_1, FUNCT_1, RELSET_1, FUNCT_2, PARTFUN1, PROB_1, SUPINF_2, MEASURE1, MESFUNC1, MESFUNC2, MESFUNC5, EXTREAL1, MEASUR10, MEASUR11, MESFUN12, MESFUNC6, LPSPACE1; constructors EXTREAL1, SUPINF_1, MESFUNC2, MEASUR11, MESFUN12, MESFUNC6, LPSPACE1; registrations ORDINAL1, XBOOLE_0, RELAT_1, SUBSET_1, XXREAL_0, XREAL_0, NAT_1, NUMBERS, VALUED_0, RELSET_1, MEASURE1, XXREAL_3, MESFUNC7; requirements BOOLE, SUBSET, NUMERALS, REAL; begin :: Preliminaries reserve X for set; theorem :: MESFUN13:1 for A being Subset of X, f being X-defined Relation holds f|A` = f|(dom f \ A); theorem :: MESFUN13:2 for f being PartFunc of X,ExtREAL holds great_eq_dom(f,+infty) = eq_dom(f,+infty); theorem :: MESFUN13:3 for f being PartFunc of X,ExtREAL holds less_eq_dom(f,-infty) = eq_dom(f,-infty); theorem :: MESFUN13:4 for f being PartFunc of X,ExtREAL, er being ExtReal holds great_eq_dom(f,er) misses less_dom(f,er); theorem :: MESFUN13:5 for f being PartFunc of X,ExtREAL holds dom f = eq_dom(f,-infty) \/ (great_dom(f,-infty) /\ less_dom(f,+infty)) \/ eq_dom(f,+infty); reserve X,X1,X2 for non empty set; theorem :: MESFUN13:6 for f being PartFunc of X,ExtREAL, x being Element of X holds (max+f).x <= (|.f.|).x & (max-f).x <= (|.f.|).x; theorem :: MESFUN13:7 for f being PartFunc of [:X1,X2:],ExtREAL, x being Element of X1, y being Element of X2 holds ProjPMap1(|.f.|,x) = |.ProjPMap1(f,x).| & ProjPMap2(|.f.|,y) = |.ProjPMap2(f,y).|; begin :: Markov's inequality and Misc. reserve S for SigmaField of X; reserve S1 for SigmaField of X1; reserve S2 for SigmaField of X2; reserve M for sigma_Measure of S; reserve M1 for sigma_Measure of S1; reserve M2 for sigma_Measure of S2; registration let X be non empty set, S be SigmaField of X, E be Element of S; cluster E-measurable for PartFunc of X,ExtREAL; end; theorem :: MESFUN13:8 for E being Element of S, f be E-measurable PartFunc of X,ExtREAL st dom f = E holds eq_dom(f,+infty) in S & eq_dom(f,-infty) in S; theorem :: MESFUN13:9 for E being Element of sigma measurable_rectangles(S1,S2), f being E-measurable PartFunc of [:X1,X2:],ExtREAL st M1 is sigma_finite & M2 is sigma_finite & dom f = E holds Integral(M1,Integral2(M2,|.f.|)) = Integral(Prod_Measure(M1,M2),|.f.|) & Integral(M2,Integral1(M1,|.f.|)) = Integral(Prod_Measure(M1,M2),|.f.|); theorem :: MESFUN13:10 for E being Element of sigma measurable_rectangles(S1,S2), f being E-measurable PartFunc of [:X1,X2:],ExtREAL st M1 is sigma_finite & M2 is sigma_finite & E = dom f holds f is_integrable_on Prod_Measure(M1,M2) iff Integral(M2,Integral1(M1,|.f.|)) < +infty; theorem :: MESFUN13:11 for E being Element of sigma measurable_rectangles(S1,S2), f being E-measurable PartFunc of [:X1,X2:],ExtREAL st M1 is sigma_finite & M2 is sigma_finite & E = dom f holds f is_integrable_on Prod_Measure(M1,M2) iff Integral(M1,Integral2(M2,|.f.|)) < +infty; theorem :: MESFUN13:12 for E being Element of sigma measurable_rectangles(S1,S2), U being Element of S1, f be E-measurable PartFunc of [:X1,X2:],ExtREAL st M2 is sigma_finite & E = dom f holds Integral2(M2,|.f.|) is U-measurable; theorem :: MESFUN13:13 for E being Element of sigma measurable_rectangles(S1,S2), V being Element of S2, f being E-measurable PartFunc of [:X1,X2:],ExtREAL st M1 is sigma_finite & E = dom f holds Integral1(M1,|.f.|) is V-measurable; theorem :: MESFUN13:14 for f being PartFunc of [:X1,X2:],ExtREAL st M2 is sigma_finite & f is_integrable_on Prod_Measure(M1,M2) holds Integral(M1,max+(Integral2(M2,|.f.|))) = Integral(M1,Integral2(M2,|.f.|)) & Integral(M1,max-(Integral2(M2,|.f.|))) = 0; theorem :: MESFUN13:15 for f being PartFunc of [:X1,X2:],ExtREAL st M1 is sigma_finite & f is_integrable_on Prod_Measure(M1,M2) holds Integral(M2,max+(Integral1(M1,|.f.|))) = Integral(M2,Integral1(M1,|.f.|)) & Integral(M2,max-(Integral1(M1,|.f.|))) = 0; ::$N Markov's inequality theorem :: MESFUN13:16 :: extension of RANDOM_1:36 for E being Element of S, f being E-measurable PartFunc of X,ExtREAL, er being ExtReal st dom f = E & f is nonnegative & er >= 0 holds er*M.(great_eq_dom(f,er)) <= Integral(M,f); begin :: Fubini's Theorem theorem :: MESFUN13:17 for f,g being PartFunc of X,ExtREAL st f is_integrable_on M & g is_integrable_on M holds Integral(M,f+g) = Integral(M,f|(dom f /\ dom g)) + Integral(M,g|(dom f /\ dom g)) & Integral(M,f-g) = Integral(M,f|(dom f /\ dom g)) - Integral(M,g|(dom f /\ dom g)); theorem :: MESFUN13:18 for f being PartFunc of X,ExtREAL holds f is_integrable_on M iff max+f is_integrable_on M & max-f is_integrable_on M; theorem :: MESFUN13:19 for A,B being Element of S, f being PartFunc of X,ExtREAL st B c= A & f|A is B-measurable holds f is B-measurable; definition let X be non empty set, S be SigmaField of X, M be sigma_Measure of S, f be PartFunc of X,ExtREAL; pred f is_a.e.integrable_on M means :: MESFUN13:def 1 ex A be Element of S st M.A = 0 & A c= dom f & f|A` is_integrable_on M; end; theorem :: MESFUN13:20 for f being PartFunc of X,ExtREAL st f is_a.e.integrable_on M holds dom f in S; theorem :: MESFUN13:21 for f being PartFunc of X,ExtREAL st f is_integrable_on M holds f is_a.e.integrable_on M; definition let X be non empty set, S be SigmaField of X, M be sigma_Measure of S, f be PartFunc of X,ExtREAL; pred f is_a.e.finite M means :: MESFUN13:def 2 ex A be Element of S st M.A = 0 & A c= dom f & f|A` is PartFunc of X,REAL; end; theorem :: MESFUN13:22 for E being Element of S, f being E-measurable PartFunc of X,ExtREAL st dom f = E holds f is_a.e.finite M iff M.(eq_dom(f,+infty) \/ eq_dom(f,-infty)) = 0; theorem :: MESFUN13:23 for f being PartFunc of X,ExtREAL st f is_integrable_on M holds M.(eq_dom(f,+infty)) = 0 & M.(eq_dom(f,-infty)) = 0 & f is_a.e.finite M & for r being Real st r > 0 holds M.(great_eq_dom(|.f.|,r)) < +infty; theorem :: MESFUN13:24 for f being PartFunc of [:X1,X2:],ExtREAL st M1 is sigma_finite & M2 is sigma_finite & f is_integrable_on Prod_Measure(M1,M2) holds Integral1(M1,max+f) is_integrable_on M2 & Integral2(M2,max+f) is_integrable_on M1 & Integral1(M1,max-f) is_integrable_on M2 & Integral2(M2,max-f) is_integrable_on M1 & Integral1(M1,|.f.|) is_integrable_on M2 & Integral2(M2,|.f.|) is_integrable_on M1; theorem :: MESFUN13:25 for E being Element of S, f being E-measurable PartFunc of X,ExtREAL st dom f c= E & f is_a.e.integrable_on M holds f is_integrable_on M; theorem :: MESFUN13:26 for A being Element of S, f being PartFunc of X,ExtREAL st M.A = 0 & A c= dom f & f|A` is_integrable_on M holds ex g be PartFunc of X,ExtREAL st dom g = dom f & f|A` = g|A` & g is_integrable_on M & Integral(M,f|A`) = Integral(M,g); theorem :: MESFUN13:27 for f being PartFunc of [:X1,X2:],ExtREAL st M1 is sigma_finite & M2 is sigma_finite & f is_integrable_on Prod_Measure(M1,M2) holds Integral(Prod_Measure(M1,M2),f) = Integral(M2,Integral1(M1,max+f)) - Integral(M2,Integral1(M1,max-f)) & Integral(Prod_Measure(M1,M2),f) = Integral(M1,Integral2(M2,max+f)) - Integral(M1,Integral2(M2,max-f)); theorem :: MESFUN13:28 for E being Element of sigma measurable_rectangles(S1,S2), y be Element of X2 holds ( M1.Measurable-Y-section(E,y) <> 0 implies Integral1(M1,Xchi(E,[:X1,X2:])).y = +infty ) & ( M1.Measurable-Y-section(E,y) = 0 implies Integral1(M1,Xchi(E,[:X1,X2:])).y = 0 ); theorem :: MESFUN13:29 for E being Element of sigma measurable_rectangles(S1,S2), x be Element of X1 holds ( M2.Measurable-X-section(E,x) <> 0 implies Integral2(M2,Xchi(E,[:X1,X2:])).x = +infty ) & ( M2.Measurable-X-section(E,x) = 0 implies Integral2(M2,Xchi(E,[:X1,X2:])).x = 0 ); ::$N Fubini`s theorem theorem :: MESFUN13:30 for X1,X2 being non empty set, S1 being SigmaField of X1, S2 being SigmaField of X2, M1 being sigma_Measure of S1, M2 being sigma_Measure of S2, f being PartFunc of [:X1,X2:],ExtREAL, SX1 being Element of S1 st M1 is sigma_finite & M2 is sigma_finite & f is_integrable_on Prod_Measure(M1,M2) & X1 = SX1 holds ex U be Element of S1 st M1.U = 0 & (for x being Element of X1 st x in U` holds ProjPMap1(f,x) is_integrable_on M2) & Integral2(M2,|.f.|)|U` is PartFunc of X1,REAL & Integral2(M2,f) is (SX1\U)-measurable & Integral2(M2,f)|U` is_integrable_on M1 & Integral2(M2,f)|U` in L1_Functions M1 & (ex g be Function of X1,ExtREAL st g is_integrable_on M1 & g|U` = Integral2(M2,f)|U` & Integral(Prod_Measure(M1,M2),f) = Integral(M1,g)); theorem :: MESFUN13:31 for X1,X2 being non empty set, S1 being SigmaField of X1, S2 being SigmaField of X2, M1 being sigma_Measure of S1, M2 being sigma_Measure of S2, f being PartFunc of [:X1,X2:],ExtREAL, SX2 being Element of S2 st M1 is sigma_finite & M2 is sigma_finite & f is_integrable_on Prod_Measure(M1,M2) & X2 = SX2 holds ex V be Element of S2 st M2.V = 0 & (for y being Element of X2 st y in V` holds ProjPMap2(f,y) is_integrable_on M1) & Integral1(M1,|.f.|)|V` is PartFunc of X2,REAL & Integral1(M1,f) is (SX2\V)-measurable & Integral1(M1,f)|V` is_integrable_on M2 & Integral1(M1,f)|V` in L1_Functions M2 & (ex g be Function of X2,ExtREAL st g is_integrable_on M2 & g|V` = Integral1(M1,f)|V` & Integral(Prod_Measure(M1,M2),f) = Integral(M2,g)); theorem :: MESFUN13:32 for X1,X2 being non empty set, S1 being SigmaField of X1, S2 being SigmaField of X2, M1 being sigma_Measure of S1, M2 being sigma_Measure of S2, f being PartFunc of [:X1,X2:],ExtREAL st M1 is sigma_finite & M2 is sigma_finite & f is_integrable_on Prod_Measure(M1,M2) & (for x being Element of X1 holds Integral2(M2,|.f.|).x < +infty) holds (for x being Element of X1 holds ProjPMap1(f,x) is_integrable_on M2) & (for U being Element of S1 holds Integral2(M2,f) is U-measurable) & Integral2(M2,f) is_integrable_on M1 & Integral(Prod_Measure(M1,M2),f) = Integral(M1,Integral2(M2,f)) & Integral2(M2,f) in L1_Functions M1; theorem :: MESFUN13:33 for X1,X2 being non empty set, S1 being SigmaField of X1, S2 being SigmaField of X2, M1 being sigma_Measure of S1, M2 being sigma_Measure of S2, f being PartFunc of [:X1,X2:],ExtREAL st M1 is sigma_finite & M2 is sigma_finite & f is_integrable_on Prod_Measure(M1,M2) & (for y being Element of X2 holds Integral1(M1,|.f.|).y < +infty) holds (for y being Element of X2 holds ProjPMap2(f,y) is_integrable_on M1) & (for V being Element of S2 holds Integral1(M1,f) is V-measurable) & Integral1(M1,f) is_integrable_on M2 & Integral(Prod_Measure(M1,M2),f) = Integral(M2,Integral1(M1,f)) & Integral1(M1,f) in L1_Functions M2;