:: Fatou's Lemma and the {L}ebesgue's Convergence Theorem :: by Noboru Endou , Keiko Narita and Yasunari Shidama :: :: Received July 22, 2008 :: Copyright (c) 2008-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, XBOOLE_0, MESFUNC8, SEQFUNC, MESFUNC5, SUBSET_1, SUPINF_1, NAT_1, FUNCT_1, XXREAL_0, ORDINAL2, RELAT_1, XXREAL_2, RINFSUP1, ARYTM_3, PBOOLE, PARTFUN1, PROB_1, MEASURE1, CARD_1, SUPINF_2, MESFUNC1, VALUED_0, SEQ_2, ARYTM_1, TARSKI, REAL_1, INTEGRA5, VALUED_1, COMPLEX1, RFUNCT_3, MESFUNC2, MESFUN10; notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XXREAL_3, EXTREAL1, XCMPLX_0, XREAL_0, REAL_1, XXREAL_0, XXREAL_2, RELAT_1, FUNCT_1, RELSET_1, DOMAIN_1, NAT_1, VALUED_0, FUNCT_2, PARTFUN1, PROB_1, SUPINF_1, SUPINF_2, MEASURE1, MESFUNC1, MEASURE6, MESFUNC2, SEQFUNC, MESFUNC5, MESFUNC8, RINFSUP2; constructors REAL_1, DOMAIN_1, EXTREAL1, MESFUNC1, MEASURE6, MESFUNC2, MESFUNC5, RINFSUP2, MESFUNC9, SUPINF_1, MESFUNC8, SEQFUNC, RELSET_1, BINOP_2, NUMBERS; registrations NAT_1, XREAL_0, MEMBERED, ORDINAL1, PARTFUN1, XBOOLE_0, SUPINF_2, NUMBERS, XXREAL_0, MESFUNC8, RINFSUP2, VALUED_0, MEMBER_1, RELSET_1, FUNCT_2; requirements NUMERALS, REAL, BOOLE, SUBSET, ARITHM; begin :: Fatou's Lemma reserve X for non empty set, F for with_the_same_dom Functional_Sequence of X, ExtREAL, seq,seq1,seq2 for ExtREAL_sequence, x for Element of X, a,r for R_eal, n,m,k for Nat; theorem :: MESFUN10:1 (for n be Nat holds seq1.n <= seq2.n) implies inf rng seq1 <= inf rng seq2; theorem :: MESFUN10:2 (for n be Nat holds seq1.n <= seq2.n) implies ( inferior_realsequence seq1).k <= (inferior_realsequence seq2).k & ( superior_realsequence seq1).k <= (superior_realsequence seq2).k; theorem :: MESFUN10:3 (for n be Nat holds seq1.n <= seq2.n) implies lim_inf seq1 <= lim_inf seq2 & lim_sup seq1 <= lim_sup seq2; theorem :: MESFUN10:4 (for n be Nat holds seq.n >= a) implies inf seq >= a; theorem :: MESFUN10:5 (for n be Nat holds seq.n <= a) implies sup seq <= a; theorem :: MESFUN10:6 for n be Element of NAT st x in dom inf(F^\n) holds (inf(F^\n)).x =inf((F#x)^\n); reserve S for SigmaField of X, M for sigma_Measure of S, E for Element of S; ::$N Fatou's Lemma theorem :: MESFUN10:7 E = dom(F.0) & (for n holds F.n is nonnegative & F.n is E-measurable) implies ex I be ExtREAL_sequence st (for n holds I.n = Integral(M,F.n)) & Integral(M,lim_inf F) <= lim_inf I; begin :: Lebesgue's Convergence Theorem theorem :: MESFUN10:8 for Y being non empty Subset of ExtREAL, r be R_eal st r in REAL holds sup({r} + Y) = sup {r} + sup Y; theorem :: MESFUN10:9 for Y being non empty Subset of ExtREAL, r be R_eal st r in REAL holds inf({r} + Y) = inf {r} + inf Y; theorem :: MESFUN10:10 r in REAL & (for n be Nat holds seq1.n = r + seq2.n) implies lim_inf seq1 = r + lim_inf seq2 & lim_sup seq1 = r + lim_sup seq2; reserve F1,F2 for Functional_Sequence of X,ExtREAL, f,g,P for PartFunc of X, ExtREAL; theorem :: MESFUN10:11 dom(F1.0) = dom(F2.0) & F1 is with_the_same_dom & f"{+infty} = {} & f"{-infty} = {} & (for n be Nat holds F1.n = f + F2.n) implies lim_inf F1 = f + lim_inf F2 & lim_sup F1 = f + lim_sup F2; theorem :: MESFUN10:12 f is_integrable_on M & g is_integrable_on M implies f-g is_integrable_on M; theorem :: MESFUN10:13 f is_integrable_on M & g is_integrable_on M implies ex E be Element of S st E = dom f /\ dom g & Integral(M,f-g)=Integral(M,f|E)+Integral(M ,(-g)|E); theorem :: MESFUN10:14 (for n be Nat holds seq1.n = -seq2.n) implies lim_inf seq2 = - lim_sup seq1 & lim_sup seq2 = -lim_inf seq1; theorem :: MESFUN10:15 dom(F1.0) = dom(F2.0) & F1 is with_the_same_dom & (for n be Nat holds F1.n = - F2.n) implies lim_inf F1 = -lim_sup F2 & lim_sup F1 = -lim_inf F2; theorem :: MESFUN10:16 E = dom(F.0) & E = dom P & (for n be Nat holds F.n is E-measurable) & P is_integrable_on M & (for x be Element of X, n be Nat st x in E holds (|. F.n .|).x <= P.x) implies (for n be Nat holds |. F.n .| is_integrable_on M) & |. lim_inf F .| is_integrable_on M & |. lim_sup F .| is_integrable_on M; :: Lebesgue's Convergence theorem theorem :: MESFUN10:17 E = dom(F.0) & E = dom P & (for n be Nat holds F.n is E-measurable) & P is_integrable_on M & P is nonnegative & (for x be Element of X, n be Nat st x in E holds (|. F.n .|).x <= P.x) implies ex I be ExtREAL_sequence st (for n be Nat holds I.n = Integral(M,F.n)) & lim_inf I >= Integral(M,lim_inf F) & lim_sup I <= Integral(M,lim_sup F) & ( (for x be Element of X st x in E holds F#x is convergent) implies I is convergent & lim I = Integral(M,lim F) ); theorem :: MESFUN10:18 E = dom(F.0) & (for n holds F.n is nonnegative & F.n is E-measurable ) & (for x,n,m st x in E & n <= m holds (F.n).x >= (F.m).x) & Integral(M,(F.0) |E) < +infty implies ex I be ExtREAL_sequence st (for n be Nat holds I.n = Integral(M,F.n)) & I is convergent & lim I = Integral(M,lim F); definition let X be set, F be Functional_Sequence of X,ExtREAL; attr F is uniformly_bounded means :: MESFUN10:def 1 ex K be Real st for n be Nat , x be set st x in dom(F.0) holds |. (F.n).x .| <= K; end; ::$N Lebesgue's Bounded Convergence Theorem theorem :: MESFUN10:19 M.E < +infty & E = dom(F.0) & (for n be Nat holds F.n is E-measurable ) & F is uniformly_bounded & (for x be Element of X st x in E holds F#x is convergent) implies (for n be Nat holds F.n is_integrable_on M) & lim F is_integrable_on M & ex I be ExtREAL_sequence st (for n be Nat holds I.n = Integral(M,F.n)) & I is convergent & lim I = Integral(M,lim F); definition let X be set, F be Functional_Sequence of X,ExtREAL, f be PartFunc of X, ExtREAL; pred F is_uniformly_convergent_to f means :: MESFUN10:def 2 F is with_the_same_dom & dom(F.0) = dom f & for e be Real st e>0 ex N be Nat st for n be Nat, x be set st n >= N & x in dom(F.0) holds |. (F.n).x - f.x .| < e; end; theorem :: MESFUN10:20 F1 is_uniformly_convergent_to f implies for x be Element of X st x in dom(F1.0) holds F1#x is convergent & lim(F1#x) = f.x; theorem :: MESFUN10:21 M.E < +infty & E = dom(F.0) & (for n be Nat holds F.n is_integrable_on M) & F is_uniformly_convergent_to f implies f is_integrable_on M & ex I be ExtREAL_sequence st (for n be Nat holds I.n = Integral(M,F.n)) & I is convergent & lim I = Integral(M,f);