:: Linear Transformations of Euclidean Topological Spaces. Part {II} :: by Karol P\kak :: :: Received October 26, 2010 :: Copyright (c) 2010-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies ALGSTR_0, ARYTM_1, ARYTM_3, CARD_1, CARD_3, CLASSES1, ENTROPY1, EUCLID, FINSEQ_1, FINSEQ_2, FINSEQ_4, FINSET_1, FUNCT_1, FUNCT_2, FVSUM_1, INCSP_1, LMOD_7, MATRIX_1, MATRIX_3, MATRIX13, MATRLIN, MATRLIN2, MESFUNC1, NAT_1, NUMBERS, ORDINAL4, PARTFUN1, PBOOLE, PRE_TOPC, PRVECT_1, QC_LANG1, RANKNULL, RELAT_1, RLAFFIN1, RLSUB_1, RLVECT_1, RLVECT_2, RLVECT_3, RLVECT_5, RVSUM_1, SEMI_AF1, STRUCT_0, SUBSET_1, SUPINF_2, TARSKI, TREES_1, VALUED_0, VALUED_1, VECTSP_1, VECTSP10, XBOOLE_0, XXREAL_0, FUNCT_7; notations TARSKI, XBOOLE_0, SUBSET_1, RELAT_1, CARD_1, ORDINAL1, NUMBERS, XCMPLX_0, XXREAL_0, FINSET_1, FUNCT_1, RELSET_1, PARTFUN1, NAT_1, VALUED_0, FUNCT_2, FINSEQ_1, FINSEQ_2, FINSEQ_3, STRUCT_0, RLVECT_1, RLVECT_2, RLVECT_3, VECTSP_1, MATRIX_0, MATRIX_1, MATRIX_3, VECTSP_4, VECTSP_6, VECTSP_7, MATRIX13, RVSUM_1, ALGSTR_0, FVSUM_1, RANKNULL, PRE_TOPC, MATRIX_6, MATRLIN, MATRLIN2, NAT_D, EUCLID, GROUP_1, MATRIX11, FINSEQOP, ENTROPY1, RLSUB_1, RUSUB_4, PRVECT_1, RLAFFIN1, MATRTOP1; constructors BINARITH, ENTROPY1, FVSUM_1, LAPLACE, MATRIX_6, MATRIX11, MATRIX13, MATRLIN2, MATRTOP1, MONOID_0, RANKNULL, REALSET1, RELSET_1, RLAFFIN1, RLVECT_3, RUSUB_5, VECTSP10, MATRIX15, MATRIX_1, MATRIX_4, FUNCSDOM, PCOMPS_1, SQUARE_1, BINOP_2; registrations CARD_1, EUCLID, FINSEQ_1, FINSEQ_2, FINSET_1, FUNCT_1, FUNCT_2, MATRIX13, MATRLIN2, MATRTOP1, MEMBERED, MONOID_0, NAT_1, NUMBERS, PRVECT_1, RELAT_1, RELSET_1, RLAFFIN1, RLVECT_3, RVSUM_1, STRUCT_0, RLVECT_2, VALUED_0, VECTSP_1, VECTSP_9, XREAL_0, XXREAL_0, MATRIX_6, ORDINAL1; requirements ARITHM, NUMERALS, REAL, BOOLE, SUBSET; begin :: Correspondence Between Euclidean Topological Space and Vector :: Space over F_Real reserve X for set, n,m,k for Nat, K for Field, f for n-element real-valued FinSequence, M for Matrix of n,m,F_Real; theorem :: MATRTOP2:1 X is Linear_Combination of n-VectSp_over F_Real iff X is Linear_Combination of TOP-REAL n; theorem :: MATRTOP2:2 for Lv be Linear_Combination of n-VectSp_over F_Real, Lr be Linear_Combination of TOP-REAL n st Lr = Lv holds Carrier Lr = Carrier Lv; theorem :: MATRTOP2:3 for F be FinSequence of TOP-REAL n, fr be Function of TOP-REAL n,REAL, Fv be FinSequence of n-VectSp_over F_Real, fv be Function of n-VectSp_over F_Real,F_Real st fr = fv & F = Fv holds fr(#)F = fv(#)Fv; theorem :: MATRTOP2:4 for F be FinSequence of TOP-REAL n, Fv be FinSequence of n-VectSp_over F_Real st Fv = F holds Sum F = Sum Fv; theorem :: MATRTOP2:5 for Lv be Linear_Combination of n-VectSp_over F_Real, Lr be Linear_Combination of TOP-REAL n st Lr = Lv holds Sum Lr = Sum Lv; theorem :: MATRTOP2:6 for Af be Subset of n-VectSp_over F_Real, Ar be Subset of TOP-REAL n st Af = Ar holds [#]Lin Ar = [#]Lin Af; theorem :: MATRTOP2:7 for Af be Subset of n-VectSp_over F_Real, Ar be Subset of TOP-REAL n st Af = Ar holds Af is linearly-independent iff Ar is linearly-independent; theorem :: MATRTOP2:8 for V be VectSp of K, W be Subspace of V, L be Linear_Combination of V holds L|the carrier of W is Linear_Combination of W; theorem :: MATRTOP2:9 for V be VectSp of K, A be linearly-independent Subset of V for L1,L2 be Linear_Combination of V st Carrier L1 c= A & Carrier L2 c= A & Sum L1 = Sum L2 holds L1 = L2; theorem :: MATRTOP2:10 for V be RealLinearSpace, W be Subspace of V for L be Linear_Combination of V holds L|the carrier of W is Linear_Combination of W; theorem :: MATRTOP2:11 for U be Subspace of n-VectSp_over F_Real, W be Subspace of TOP-REAL n st [#]U = [#]W holds X is Linear_Combination of U iff X is Linear_Combination of W; theorem :: MATRTOP2:12 for U be Subspace of n-VectSp_over F_Real, W be Subspace of TOP-REAL n for LU be Linear_Combination of U, LW be Linear_Combination of W st LU = LW holds Carrier LU = Carrier LW & Sum LU = Sum LW; registration let m,K; let A be Subset of m-VectSp_over K; cluster Lin A -> finite-dimensional; end; begin :: Correspondence Between the Mx2Tran Operator and Decomposition of :: a Vector in Basis theorem :: MATRTOP2:13 the_rank_of M = n implies M is OrdBasis of Lin lines M; theorem :: MATRTOP2:14 for V,W be VectSp of K for T be linear-transformation of V,W for A be Subset of V for L be Linear_Combination of A st T|A is one-to-one holds T.(Sum L) = Sum (T@L); theorem :: MATRTOP2:15 for S be Subset of Seg n st M|S is one-to-one & rng(M|S) = lines M ex L be Linear_Combination of lines M st Sum L = (Mx2Tran M).f & for k st k in S holds L.Line(M,k) = Sum Seq(f|M"{Line(M,k)}); theorem :: MATRTOP2:16 M is without_repeated_line implies ex L be Linear_Combination of lines M st Sum L=(Mx2Tran M).f & for k st k in dom f holds L.Line(M,k)=f.k; theorem :: MATRTOP2:17 for B be OrdBasis of Lin lines M st B = M for Mf be Element of Lin lines M st Mf = (Mx2Tran M).f holds Mf|--B = f; theorem :: MATRTOP2:18 rng(Mx2Tran M) = [#]Lin lines M; theorem :: MATRTOP2:19 for F be one-to-one FinSequence of TOP-REAL n st rng F is linearly-independent ex M be Matrix of n,F_Real st M is invertible & M|len F = F; theorem :: MATRTOP2:20 for B be OrdBasis of n-VectSp_over F_Real st B = MX2FinS 1.(F_Real,n) holds f in Lin rng(B|k) iff f = (f|k)^((n-' k) |->0); theorem :: MATRTOP2:21 for F be one-to-one FinSequence of TOP-REAL n st rng F is linearly-independent for B be OrdBasis of n-VectSp_over F_Real st B = MX2FinS 1.(F_Real,n) for M be Matrix of n,F_Real st M is invertible & M|len F = F holds (Mx2Tran M).:[#]Lin rng(B|len F) = [#]Lin rng F; theorem :: MATRTOP2:22 for A,B be linearly-independent Subset of TOP-REAL n st card A = card B ex M be Matrix of n,F_Real st M is invertible & (Mx2Tran M).:[#]Lin A = [#]Lin B; begin :: Preservation of Linear and Affine Independence of Vectors by the :: Mx2Tran Operator theorem :: MATRTOP2:23 for A be linearly-independent Subset of TOP-REAL n st the_rank_of M = n holds (Mx2Tran M).:A is linearly-independent; theorem :: MATRTOP2:24 for A be affinely-independent Subset of TOP-REAL n st the_rank_of M = n holds (Mx2Tran M).:A is affinely-independent; theorem :: MATRTOP2:25 for A be affinely-independent Subset of TOP-REAL n st the_rank_of M = n for v be Element of TOP-REAL n st v in Affin A holds (Mx2Tran M).v in Affin(Mx2Tran M).:A & for f holds (v|--A).f = ((Mx2Tran M).v|--(Mx2Tran M).:A).((Mx2Tran M).f); theorem :: MATRTOP2:26 for A be linearly-independent Subset of TOP-REAL m st the_rank_of M = n holds (Mx2Tran M)"A is linearly-independent; theorem :: MATRTOP2:27 for A be affinely-independent Subset of TOP-REAL m st the_rank_of M = n holds (Mx2Tran M)"A is affinely-independent;