:: Some Properties Of Some Special Matrices, Part {II} :: by Xiaopeng Yue , Dahai Hu , Xiquan Liang and Zhongpin Sun :: :: Received January 4, 2006 :: Copyright (c) 2006-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NAT_1, VECTSP_1, MATRIX_1, RELAT_1, SUPINF_2, MESFUNC1, ALGSTR_0, TREES_1, FINSEQ_1, XXREAL_0, CARD_1, QC_LANG1, MATRIX_6, REWRITE1, ARYTM_3, ARYTM_1, RELAT_2, FUNCOP_1, ZFMISC_1, FSM_1, COHSP_1, SUBSET_1, CARD_3, MATRIX_3, FUNCT_1, PARTFUN1, MATRIX_8; notations TARSKI, ZFMISC_1, PARTFUN1, ORDINAL1, NUMBERS, FINSEQ_1, STRUCT_0, RLVECT_1, NAT_1, VECTSP_1, MATRIX_0, FUNCT_1, MATRIX_1, MATRIX_3, MATRIX_4, MATRIX_6, FVSUM_1, XXREAL_0; constructors BINOP_1, REAL_1, NAT_1, FVSUM_1, MATRIX_6, MATRIX_1, MATRIX_3, MATRIX_4; registrations RELSET_1, XREAL_0, INT_1, STRUCT_0, MATRIX_6, ORDINAL1, MATRIX_0; requirements NUMERALS, SUBSET, ARITHM; begin reserve i,n for Nat, K for Field, M1,M2,M3,M4 for Matrix of n,K; definition let n be Nat, K be Field, M1 be Matrix of n,K; attr M1 is Idempotent means :: MATRIX_8:def 1 M1*M1=M1; attr M1 is Nilpotent means :: MATRIX_8:def 2 M1*M1=0.(K,n); attr M1 is Involutory means :: MATRIX_8:def 3 M1*M1=1.(K,n); attr M1 is Self_Reversible means :: MATRIX_8:def 4 M1 is invertible & M1~=M1; end; theorem :: MATRIX_8:1 1.(K,n) is Idempotent Involutory; theorem :: MATRIX_8:2 0.(K,n) is Idempotent Nilpotent; registration let n be Nat, K be Field; cluster 1.(K,n) -> Idempotent Involutory; cluster 0.(K,n) -> Idempotent Nilpotent; end; theorem :: MATRIX_8:3 n>0 implies (M1 is Idempotent iff M1@ is Idempotent); theorem :: MATRIX_8:4 M1 is Involutory implies M1 is invertible; theorem :: MATRIX_8:5 M1 is Idempotent & M2 is Idempotent & M1 commutes_with M2 implies M1* M1 commutes_with M2*M2; theorem :: MATRIX_8:6 n>0 & M1 is Idempotent & M2 is Idempotent & M1 commutes_with M2 & M1* M2=0.(K,n) implies M1+M2 is Idempotent; theorem :: MATRIX_8:7 M1 is Idempotent & M2 is Idempotent & M1*M2=-(M2*M1) implies M1+M2 is Idempotent; theorem :: MATRIX_8:8 M1 is Idempotent & M2 is invertible implies (M2~)*M1*M2 is Idempotent; theorem :: MATRIX_8:9 M1 is invertible Idempotent implies M1~ is Idempotent; theorem :: MATRIX_8:10 M1 is invertible Idempotent implies M1=1.(K,n); theorem :: MATRIX_8:11 M1 is Idempotent & M2 is Idempotent & M1 commutes_with M2 implies M1* M2 is Idempotent; theorem :: MATRIX_8:12 M1 is Idempotent & M2 is Idempotent & M1 commutes_with M2 implies M1@* M2@ is Idempotent; theorem :: MATRIX_8:13 M1 is Idempotent & M2 is Idempotent & M1 is invertible implies M1*M2 is Idempotent; theorem :: MATRIX_8:14 M1 is Idempotent Orthogonal implies M1 is symmetric; theorem :: MATRIX_8:15 M2*M1=1.(K,n) implies M1*M2 is Idempotent; theorem :: MATRIX_8:16 M1 is Idempotent Orthogonal implies M1=1.(K,n); theorem :: MATRIX_8:17 M1 is symmetric implies M1*M1@ is symmetric; theorem :: MATRIX_8:18 M1 is symmetric implies M1@*M1 is symmetric; theorem :: MATRIX_8:19 M1 is invertible & M1*M2=M1*M3 implies M2=M3; theorem :: MATRIX_8:20 M1 is invertible & M2*M1=M3*M1 implies M2=M3; theorem :: MATRIX_8:21 M1 is invertible & M2*M1=0.(K,n) implies M2=0.(K,n); theorem :: MATRIX_8:22 M1 is invertible & M2*M1=0.(K,n) implies M2=0.(K,n); theorem :: MATRIX_8:23 M1 is Nilpotent & M1 commutes_with M2 & n>0 implies M1*M2 is Nilpotent; theorem :: MATRIX_8:24 n>0 & M1 is Nilpotent & M2 is Nilpotent & M1 commutes_with M2 & M1*M2= 0.(K,n) implies M1+M2 is Nilpotent; theorem :: MATRIX_8:25 M1 is Nilpotent & M2 is Nilpotent & M1*M2=-M2*M1 & n>0 implies M1+M2 is Nilpotent; theorem :: MATRIX_8:26 M1 is Nilpotent & n>0 implies M1@ is Nilpotent; theorem :: MATRIX_8:27 M1 is Nilpotent Idempotent implies M1=0.(K,n); theorem :: MATRIX_8:28 n>0 implies 0.(K,n)<>1.(K,n); theorem :: MATRIX_8:29 n>0 & M1 is Nilpotent implies not M1 is invertible; theorem :: MATRIX_8:30 M1 is Self_Reversible implies M1 is Involutory; theorem :: MATRIX_8:31 1.(K,n) is Self_Reversible; theorem :: MATRIX_8:32 M1 is Self_Reversible Idempotent implies M1=1.(K,n); theorem :: MATRIX_8:33 M1 is Self_Reversible symmetric implies M1 is Orthogonal; definition let n be Nat, K be Field, M1,M2 be Matrix of n,K; pred M1 is_similar_to M2 means :: MATRIX_8:def 5 ex M be Matrix of n,K st M is invertible & M1=M~*M2*M; reflexivity; symmetry; end; theorem :: MATRIX_8:34 M1 is_similar_to M2 & M2 is_similar_to M3 implies M1 is_similar_to M3; theorem :: MATRIX_8:35 M1 is_similar_to M2 & M2 is Idempotent implies M1 is Idempotent; theorem :: MATRIX_8:36 M1 is_similar_to M2 & M2 is Nilpotent & n>0 implies M1 is Nilpotent; theorem :: MATRIX_8:37 M1 is_similar_to M2 & M2 is Involutory implies M1 is Involutory; theorem :: MATRIX_8:38 M1 is_similar_to M2 & n>0 implies M1+1.(K,n) is_similar_to M2+1.(K,n); theorem :: MATRIX_8:39 M1 is_similar_to M2 & n>0 implies M1+M1 is_similar_to M2+M2; theorem :: MATRIX_8:40 M1 is_similar_to M2 & n>0 implies M1+M1+M1 is_similar_to M2+M2+M2; theorem :: MATRIX_8:41 M1 is invertible implies M2*M1 is_similar_to M1*M2; theorem :: MATRIX_8:42 M2 is invertible & M1 is_similar_to M2 implies M1 is invertible; theorem :: MATRIX_8:43 M2 is invertible & M1 is_similar_to M2 implies M1~ is_similar_to M2~; definition let n be Nat, K be Field, M1,M2 be Matrix of n,K; pred M1 is_congruent_Matrix_of M2 means :: MATRIX_8:def 6 ex M be Matrix of n,K st M is invertible & M1=M@*M2*M; reflexivity; end; theorem :: MATRIX_8:44 M1 is_congruent_Matrix_of M2 & n>0 implies M2 is_congruent_Matrix_of M1; theorem :: MATRIX_8:45 M1 is_congruent_Matrix_of M2 & M2 is_congruent_Matrix_of M3 & n>0 implies M1 is_congruent_Matrix_of M3; theorem :: MATRIX_8:46 M1 is_congruent_Matrix_of M2 & n>0 implies M1+M1 is_congruent_Matrix_of M2+M2 ; theorem :: MATRIX_8:47 M1 is_congruent_Matrix_of M2 & n>0 implies M1+M1+M1 is_congruent_Matrix_of M2+M2+M2; theorem :: MATRIX_8:48 M1 is Orthogonal implies M2*M1 is_congruent_Matrix_of M1*M2; theorem :: MATRIX_8:49 M2 is invertible & M1 is_congruent_Matrix_of M2 & n>0 implies M1 is invertible; theorem :: MATRIX_8:50 M1 is_congruent_Matrix_of M2 & n>0 implies M1@ is_congruent_Matrix_of M2@; theorem :: MATRIX_8:51 M4 is Orthogonal implies M4@*M2*M4 is_similar_to M2; definition let n be Nat, K be Field, M be Matrix of n,K; func Trace M -> Element of K equals :: MATRIX_8:def 7 Sum diagonal_of_Matrix M; end; theorem :: MATRIX_8:52 Trace M1=Trace M1@; theorem :: MATRIX_8:53 Trace (M1+M2)=Trace M1+Trace M2; theorem :: MATRIX_8:54 Trace (M1+M2+M3)=Trace M1+Trace M2+Trace M3; theorem :: MATRIX_8:55 Trace (0.(K,n))=0.K; theorem :: MATRIX_8:56 Trace (-M1) = -Trace M1; theorem :: MATRIX_8:57 -(Trace (-M1))=Trace M1; theorem :: MATRIX_8:58 Trace (M1+-M1)=0.K; theorem :: MATRIX_8:59 Trace (M1-M2)=Trace M1-Trace M2; theorem :: MATRIX_8:60 Trace (M1-M2+M3)=Trace M1-Trace M2+Trace M3; theorem :: MATRIX_8:61 Trace (M1+M2-M3)=Trace M1+Trace M2-Trace M3; theorem :: MATRIX_8:62 Trace (M1-M2-M3)=Trace M1-Trace M2-Trace M3;