:: Calculation of Matrices of Field Elements. Part {I} :: by Yatsuka Nakamura and Hiroshi Yamazaki :: :: Received August 8, 2003 :: Copyright (c) 2003-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NAT_1, VECTSP_1, MATRIX_1, ARYTM_1, ARYTM_3, FINSEQ_1, CARD_1, XXREAL_0, TREES_1, RELAT_1, SUPINF_2, SUBSET_1, NUMBERS, RVSUM_1, FINSEQ_2, STRUCT_0, FUNCT_1, TARSKI, ALGSTR_0, ZFMISC_1, XBOOLE_0, PARTFUN1, INCSP_1, CARD_3, FVSUM_1; notations TARSKI, XBOOLE_0, FINSEQ_2, SUBSET_1, ORDINAL1, NUMBERS, NAT_1, ZFMISC_1, RELAT_1, FUNCT_1, FINSEQ_1, MATRIX_0, STRUCT_0, ALGSTR_0, BINOP_1, FINSEQOP, MATRIX_3, MATRIX_1, VECTSP_1, FVSUM_1, FUNCT_3, XXREAL_0; constructors BINOP_1, FUNCT_3, NAT_1, FVSUM_1, MATRIX_3, RELSET_1, MATRIX_1; registrations XBOOLE_0, FUNCT_1, RELSET_1, XREAL_0, STRUCT_0, ORDINAL1, FINSEQ_2, CARD_1; requirements NUMERALS, BOOLE, SUBSET, ARITHM; begin reserve i,j for Nat; definition let K be Field, M1, M2 be Matrix of K; func M1-M2 -> Matrix of K equals :: MATRIX_4:def 1 M1+(-M2); end; theorem :: MATRIX_4:1 for K being Field, M being Matrix of K holds --M=M; theorem :: MATRIX_4:2 for K being Field,M being Matrix of K holds M+(-M)=0.(K,len M, width M); theorem :: MATRIX_4:3 for K being Field,M being Matrix of K holds M - M=0.(K,len M,width M); theorem :: MATRIX_4:4 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2 =len M3 & width M1=width M2 & width M2=width M3 & M1+M3=M2+M3 holds M1=M2; theorem :: MATRIX_4:5 for K being Field,M1,M2 being Matrix of K holds M1--M2=M1+M2; theorem :: MATRIX_4:6 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1= width M2 & M1 = M1 + M2 holds M2 = 0.(K,len M1,width M1); theorem :: MATRIX_4:7 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1=width M2 & M1 - M2 = 0.(K,len M1,width M1) holds M1 = M2; theorem :: MATRIX_4:8 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1=width M2 & M1+M2= 0.(K,len M1,width M1) holds M2=-M1; theorem :: MATRIX_4:9 for n,m being Nat,K being Field holds -(0.(K,n,m))=0.( K,n,m); theorem :: MATRIX_4:10 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1= width M2 & M2 - M1 = M2 holds M1=0.(K,len M1,width M1); theorem :: MATRIX_4:11 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1=width M2 holds M1 = M1 -(M2 - M2); theorem :: MATRIX_4:12 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1=width M2 holds -(M1 + M2) = -M1+-M2; theorem :: MATRIX_4:13 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1= width M2 holds M1 - (M1 - M2) = M2; theorem :: MATRIX_4:14 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2=len M3 & width M1=width M2 & width M2 = width M3 & M1 - M3 = M2 - M3 holds M1 = M2; theorem :: MATRIX_4:15 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2=len M3 & width M1=width M2 & width M2 = width M3 & M3 - M1 = M3 - M2 holds M1 = M2; theorem :: MATRIX_4:16 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2=len M3 & width M1=width M2 & width M2 = width M3 holds M1 - M2 - M3 = M1 - M3 - M2; theorem :: MATRIX_4:17 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2 =len M3 & width M1=width M2 & width M2 = width M3 holds M1 - M3 = (M1 - M2) - ( M3 - M2); theorem :: MATRIX_4:18 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2=len M3 & width M1=width M2 & width M2 = width M3 holds (M3 - M1) - (M3 - M2) = M2 - M1; theorem :: MATRIX_4:19 for K being Field,M1,M2,M3,M4 being Matrix of K st len M1=len M2 & len M2=len M3 & len M3=len M4 & width M1=width M2 & width M2 = width M3 & width M3= width M4 & M1 - M2 = M3 - M4 holds M1 - M3 = M2 - M4; theorem :: MATRIX_4:20 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1=width M2 holds M1 = M1 + (M2 - M2); theorem :: MATRIX_4:21 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1=width M2 holds M1 = M1 + M2 - M2; theorem :: MATRIX_4:22 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1=width M2 holds M1 = M1 - M2 + M2; theorem :: MATRIX_4:23 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2 =len M3 & width M1=width M2 & width M2=width M3 holds M1 + M3 = (M1 + M2) + (M3 - M2); theorem :: MATRIX_4:24 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2 =len M3 & width M1=width M2 & width M2 = width M3 holds M1 + M2 - M3 = M1 - M3 + M2; theorem :: MATRIX_4:25 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2 =len M3 & width M1=width M2 & width M2 = width M3 holds M1 - M2 + M3 = M3 - M2 + M1; theorem :: MATRIX_4:26 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2=len M3 & width M1=width M2 & width M2 = width M3 holds M1 + M3 = (M1 + M2) - (M2 - M3); theorem :: MATRIX_4:27 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2 =len M3 & width M1=width M2 & width M2 = width M3 holds M1 - M3 = (M1 + M2) - ( M3 + M2); theorem :: MATRIX_4:28 for K being Field,M1,M2,M3,M4 being Matrix of K st len M1=len M2 & len M2=len M3 & len M3=len M4 & width M1=width M2 & width M2 = width M3 & width M3=width M4 & M1 + M2 = M3 + M4 holds M1 - M3 = M4 - M2; theorem :: MATRIX_4:29 for K being Field,M1,M2,M3,M4 being Matrix of K st len M1=len M2 & len M2=len M3 & len M3=len M4 & width M1=width M2 & width M2 = width M3 & width M3= width M4 & M1 - M3 = M4 - M2 holds M1 + M2 = M3 + M4; theorem :: MATRIX_4:30 for K being Field,M1,M2,M3,M4 being Matrix of K st len M1=len M2 & len M2=len M3 & len M3=len M4 & width M1=width M2 & width M2 = width M3 & width M3= width M4 & M1 + M2 = M3 - M4 holds M1 + M4 = M3 - M2; theorem :: MATRIX_4:31 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2=len M3 & width M1=width M2 & width M2 = width M3 holds M1 - (M2 + M3) = M1 - M2 - M3; theorem :: MATRIX_4:32 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2 =len M3 & width M1=width M2 & width M2 = width M3 holds M1 - (M2 - M3) = M1 - M2 + M3; theorem :: MATRIX_4:33 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2 =len M3 & width M1=width M2 & width M2 = width M3 holds M1 - (M2 - M3) = M1 + ( M3 - M2); theorem :: MATRIX_4:34 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & width M1=width M2 holds M1 - M3 = (M1-M2)+(M2 - M3); theorem :: MATRIX_4:35 for K being Field,M1,M2,M3 being Matrix of K st -M1=-M2 holds M1=M2; theorem :: MATRIX_4:36 for K being Field,M being Matrix of K st -M=0.(K,len M,width M) holds M = 0.(K,len M,width M); theorem :: MATRIX_4:37 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1= width M2 & M1 + -M2 = 0.(K,len M1,width M1) holds M1 = M2; theorem :: MATRIX_4:38 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1=width M2 holds M1=M1+M2+(-M2); theorem :: MATRIX_4:39 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1= width M2 holds M1=M1+(M2 + -M2); theorem :: MATRIX_4:40 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1= width M2 holds M1=(-M2+M1)+M2; theorem :: MATRIX_4:41 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1= width M2 holds -(-M1+M2)=M1+-M2; theorem :: MATRIX_4:42 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1= width M2 holds M1+M2=-(-M1+-M2); theorem :: MATRIX_4:43 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1= width M2 holds -(M1 - M2) = M2 - M1; theorem :: MATRIX_4:44 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1=width M2 holds - M1 - M2 = - M2 - M1; theorem :: MATRIX_4:45 for K being Field,M1,M2 being Matrix of K st len M1=len M2 & width M1= width M2 holds M1 = - M2 - (- M1 - M2); theorem :: MATRIX_4:46 for K being Field,M1,M2,M3 being Matrix of K st len M1=len M2 & len M2=len M3 & width M1=width M2 & width M2 = width M3 holds - M1 - M2 - M3 = - M1 - M3 - M2; theorem :: MATRIX_4:47 for K being Field, M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds - M1 - M2 - M3 = - M2 - M3 - M1; theorem :: MATRIX_4:48 for K being Field, M1, M2, M3 being Matrix of K st len M1=len M2 & len M2=len M3 & width M1=width M2 & width M2 = width M3 holds - M1 - M2 - M3 = - M3 - M2 - M1; theorem :: MATRIX_4:49 for K being Field, M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 holds (M3 - M1) - ( M3 - M2) = - (M1 - M2); theorem :: MATRIX_4:50 for K being Field, M being Matrix of K holds 0.(K, len M, width M) - M = - M; theorem :: MATRIX_4:51 for K being Field, M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 + M2 = M1 - - M2; theorem :: MATRIX_4:52 for K being Field, M1, M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 = M1 - (M2 + -M2); theorem :: MATRIX_4:53 for K being Field, M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 & M1 - M3 = M2 + - M3 holds M1 = M2; theorem :: MATRIX_4:54 for K being Field, M1, M2, M3 being Matrix of K st len M1 = len M2 & len M2 = len M3 & width M1 = width M2 & width M2 = width M3 & M3 - M1 = M3 + - M2 holds M1 = M2; theorem :: MATRIX_4:55 for K being set, A,B being Matrix of K st len A=len B & width A= width B holds Indices A=Indices B; theorem :: MATRIX_4:56 :: EUCLID_2:9 for K being Field,x,y,z being FinSequence of K st len x=len y & len y=len z holds mlt(x+y,z) = mlt(x,z)+mlt(y,z); theorem :: MATRIX_4:57 :: EUCLID_2:9 for K being Field,x,y,z being FinSequence of K st len x=len y & len y=len z holds mlt(z,x+y) = mlt(z,x)+mlt(z,y); theorem :: MATRIX_4:58 for D being non empty set,M being Matrix of D holds len M >0 implies for n being Nat holds M is Matrix of n,width M, D iff n = len M; theorem :: MATRIX_4:59 for K being Field,j being Nat,A,B being Matrix of K st width A=width B & (ex j being Nat st [i,j] in Indices A) holds Line(A+B,i)=Line(A,i)+Line(B,i); theorem :: MATRIX_4:60 for K being Field,j being Nat,A,B being Matrix of K st len A=len B & (ex i st [i,j] in Indices A) holds Col(A+B,j)=Col(A,j)+Col(B,j); theorem :: MATRIX_4:61 for V1 being Field,P1,P2 be FinSequence of V1 st len P1 = len P2 holds Sum(P1+P2) = (Sum P1) + (Sum P2); theorem :: MATRIX_4:62 for K being Field,A,B,C being Matrix of K st len B=len C & width B= width C & width A=len B & len A>0 & len B>0 holds A*(B+C)=A*B + A*C; theorem :: MATRIX_4:63 for K being Field,A,B,C being Matrix of K st len B=len C & width B= width C & len A=width B & len B>0 & len A>0 holds (B+C)*A=B*A + C*A; theorem :: MATRIX_4:64 for K being Field,n,m,k being Nat, M1 being Matrix of n,m,K , M2 being Matrix of m,k,K st width M1=len M2 & 0< len M1 & 0