:: The Banach Space $l^p$ :: by Yasumasa Suzuki :: :: Received September 25, 2004 :: Copyright (c) 2004-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, SEQ_1, REAL_1, SUBSET_1, FUNCT_1, COMPLEX1, POWER, XXREAL_0, XBOOLE_0, RSSPACE, SERIES_1, CARD_1, TARSKI, RELAT_1, ARYTM_3, CARD_3, RLVECT_1, RSSPACE3, NORMSP_1, RLSUB_1, XXREAL_2, VALUED_0, VALUED_1, ALGSTR_0, ZFMISC_1, STRUCT_0, SUPINF_2, REALSET1, ARYTM_1, SEQ_2, ORDINAL2, PRE_TOPC, NAT_1, LOPBAN_1, LP_SPACE, NORMSP_0, METRIC_1, RELAT_2; notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, MCART_1, RELAT_1, FUNCT_1, REALSET1, PARTFUN1, FUNCT_2, PRE_TOPC, DOMAIN_1, XXREAL_0, XREAL_0, XCMPLX_0, ORDINAL1, NUMBERS, RLVECT_1, COMPLEX1, REAL_1, NAT_1, STRUCT_0, ALGSTR_0, RLSUB_1, NORMSP_0, NORMSP_1, VALUED_1, SEQ_1, SEQ_2, SERIES_1, POWER, RSSPACE, RSSPACE3, LOPBAN_1; constructors REAL_1, COMPLEX1, SEQ_2, PREPOWER, SERIES_1, REALSET1, RLSUB_1, RSSPACE3, LOPBAN_1, RELSET_1, BINOP_2, COMSEQ_2, BINOP_1, FUNCSDOM, SEQ_1; registrations XBOOLE_0, SUBSET_1, ORDINAL1, RELSET_1, NUMBERS, XXREAL_0, XREAL_0, MEMBERED, REALSET1, STRUCT_0, RLVECT_1, LOPBAN_1, VALUED_0, RSSPACE, VALUED_1, FUNCT_2, SERIES_1; requirements SUBSET, REAL, BOOLE, NUMERALS, ARITHM; begin :: The Real Norm Space of l^p Real Sequences definition let x be Real_Sequence; let p be Real; func x rto_power p -> Real_Sequence means :: LP_SPACE:def 1 for n be Nat holds it.n = |.x.n.| to_power p; end; definition let p be Real; assume p >= 1; func the_set_of_RealSequences_l^p -> non empty Subset of Linear_Space_of_RealSequences means :: LP_SPACE:def 2 for x being set holds x in it iff x in the_set_of_RealSequences & seq_id(x) rto_power p is summable; end; reserve x1,x2,y1,a,b,c for Real; theorem :: LP_SPACE:1 a >= 0 & a < b & c > 0 implies a to_power c < b to_power c; theorem :: LP_SPACE:2 for p be Real st 1 <= p for a,b be Real_Sequence for n be Nat holds (Partial_Sums((a + b) rto_power p).n) to_power (1/p) <= ( Partial_Sums(a rto_power p).n) to_power (1/p) + (Partial_Sums(b rto_power p).n) to_power (1/p); theorem :: LP_SPACE:3 for a,b be Real_Sequence for p be Real st 1 <= p & (a rto_power p ) is summable & (b rto_power p) is summable holds ((a+b) rto_power p) is summable & (Sum((a + b) rto_power p)) to_power (1/p) <= (Sum(a rto_power p)) to_power (1/p) + (Sum(b rto_power p)) to_power (1/p); theorem :: LP_SPACE:4 for p be Real st 1 <= p holds the_set_of_RealSequences_l^p is linearly-closed; theorem :: LP_SPACE:5 for p be Real st 1 <= p holds RLSStruct (# the_set_of_RealSequences_l^p, Zero_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Add_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Mult_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences) #) is Subspace of Linear_Space_of_RealSequences; theorem :: LP_SPACE:6 for p be Real st 1 <= p holds RLSStruct (# the_set_of_RealSequences_l^ p, Zero_(the_set_of_RealSequences_l^p,Linear_Space_of_RealSequences), Add_( the_set_of_RealSequences_l^p,Linear_Space_of_RealSequences), Mult_( the_set_of_RealSequences_l^p,Linear_Space_of_RealSequences) #) is Abelian add-associative right_zeroed right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital; theorem :: LP_SPACE:7 for p be Real st 1 <= p holds RLSStruct (# the_set_of_RealSequences_l^ p, Zero_(the_set_of_RealSequences_l^p,Linear_Space_of_RealSequences), Add_( the_set_of_RealSequences_l^p,Linear_Space_of_RealSequences), Mult_( the_set_of_RealSequences_l^p,Linear_Space_of_RealSequences) #) is RealLinearSpace; definition let p be Real; func l_norm^p -> Function of the_set_of_RealSequences_l^p, REAL means :: LP_SPACE:def 3 for x be object st x in the_set_of_RealSequences_l^p holds it.x = ( Sum(seq_id(x) rto_power p) ) to_power (1/p); end; theorem :: LP_SPACE:8 for p be Real st 1 <= p holds NORMSTR (# the_set_of_RealSequences_l^p, Zero_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Add_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Mult_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), l_norm^p #) is RealLinearSpace; theorem :: LP_SPACE:9 for p be Real st p >= 1 holds NORMSTR (# the_set_of_RealSequences_l^p, Zero_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Add_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Mult_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), l_norm^p #) is Subspace of Linear_Space_of_RealSequences; begin :: The Banach Space of l^p Real Sequences theorem :: LP_SPACE:10 for p be Real st 1 <=p holds for lp be non empty NORMSTR st lp = NORMSTR (# the_set_of_RealSequences_l^p, Zero_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Add_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Mult_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), l_norm^p #) holds the carrier of lp = the_set_of_RealSequences_l^p & ( for x be set holds x is VECTOR of lp iff x is Real_Sequence & seq_id(x) rto_power p is summable ) & 0.lp = Zeroseq & ( for x be VECTOR of lp holds x =seq_id(x) ) & ( for x,y be VECTOR of lp holds x+y = seq_id(x)+seq_id(y) ) & ( for r be Real for x be VECTOR of lp holds r*x = r(#) seq_id(x) ) & ( for x be VECTOR of lp holds -x = -seq_id(x) & seq_id(-x) = - seq_id(x) ) & ( for x,y be VECTOR of lp holds x-y =seq_id(x)-seq_id(y) ) & ( for x be VECTOR of lp holds seq_id(x) rto_power p is summable ) & for x be VECTOR of lp holds ||.x.|| = ( Sum(seq_id(x) rto_power p) ) to_power (1/p); theorem :: LP_SPACE:11 for p be Real st p>=1 holds for rseq be Real_Sequence st (for n be Nat holds rseq.n=0) holds rseq rto_power p is summable & ( Sum( rseq rto_power p) ) to_power (1/p)=0; theorem :: LP_SPACE:12 for p be Real st 1 <=p for rseq be Real_Sequence st rseq rto_power p is summable & ( Sum(rseq rto_power p) ) to_power (1/p)=0 holds for n be Nat holds rseq.n = 0; theorem :: LP_SPACE:13 for p be Real st 1 <= p for lp be non empty NORMSTR st lp = NORMSTR (# the_set_of_RealSequences_l^p, Zero_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Add_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Mult_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), l_norm^p #) for x, y being Point of lp, a be Real holds ( ||.x.|| = 0 iff x = 0.lp ) & 0 <= ||.x.|| & ||.x+y.|| <= ||.x .|| + ||.y.|| & ||.(a*x).|| = |.a.| * ||.x.||; theorem :: LP_SPACE:14 for p be Real st p >= 1 for lp be non empty NORMSTR st lp = NORMSTR (# the_set_of_RealSequences_l^p, Zero_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Add_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Mult_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), l_norm^p #) holds lp is reflexive discerning RealNormSpace-like; theorem :: LP_SPACE:15 for p be Real st p >= 1 for lp be non empty NORMSTR st lp = NORMSTR (# the_set_of_RealSequences_l^p, Zero_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Add_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Mult_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), l_norm^p #) holds lp is RealNormSpace; theorem :: LP_SPACE:16 for p be Real st 1 <=p for lp be RealNormSpace st lp = NORMSTR (# the_set_of_RealSequences_l^p, Zero_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Add_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Mult_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), l_norm^p #) holds for vseq be sequence of lp st vseq is Cauchy_sequence_by_Norm holds vseq is convergent; definition let p be Real such that 1 <= p; func l_Space^p -> RealBanachSpace equals :: LP_SPACE:def 4 NORMSTR (# the_set_of_RealSequences_l^p, Zero_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Add_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), Mult_(the_set_of_RealSequences_l^p, Linear_Space_of_RealSequences), l_norm^p #); end;