:: Continuity of Bounded Linear Operators on Normed Linear Spaces :: by Kazuhisa Nakasho , Yuichi Futa and Yasunari Shidama :: :: Received September 29, 2018 :: Copyright (c) 2018-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, REAL_1, ZFMISC_1, NORMSP_1, PRE_TOPC, PARTFUN1, FUNCT_1, NAT_1, SUBSET_1, RELAT_1, LOPBAN_1, MSSUBFAM, TARSKI, ARYTM_3, VALUED_1, FUNCT_2, ARYTM_1, SEQ_2, ORDINAL2, SUPINF_2, FCONT_1, STRUCT_0, CARD_1, NFCONT_1, NFCONT_2, DUALSP01, FUNCT_5, UNIALG_1, FUNCOP_1, SEQ_4, XXREAL_2, XXREAL_0, XBOOLE_0, RLVECT_1, CFCONT_1, REWRITE1, METRIC_1, COMPLEX1, TOPS_1, LOPBAN_8; notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1, ORDINAL1, RELSET_1, PARTFUN1, FUNCT_2, FUNCT_5, BINOP_1, FUNCOP_1, NUMBERS, XCMPLX_0, XXREAL_0, XXREAL_2, XREAL_0, NAT_1, COMPLEX1, VALUED_1, SEQ_2, SEQ_4, STRUCT_0, PRE_TOPC, RLVECT_1, VECTSP_1, NORMSP_0, NORMSP_1, NORMSP_3, LOPBAN_1, LOPBAN_5, NFCONT_1, NFCONT_2, PRVECT_3, DUALSP01; constructors SEQ_2, SEQ_4, NFCONT_1, NFCONT_2, COMSEQ_2, RELSET_1, NAT_D, RSSPACE3, NDIFF_7, REALSET1, NORMSP_3, LOPBAN_5; registrations RELSET_1, STRUCT_0, XREAL_0, MEMBERED, FUNCT_1, VALUED_0, VALUED_1, FUNCT_2, NUMBERS, XBOOLE_0, RELAT_1, ORDINAL1, LOPBAN_1, PRVECT_3, NORMSP_0, NAT_1, NORMSP_1; requirements SUBSET, REAL, BOOLE, NUMERALS, ARITHM; begin :: Uniform Continuity and Lipschitz Continuity of :: Bounded Linear Operators reserve S,T,W,Y for RealNormSpace; reserve f,f1,f2 for PartFunc of S,T; reserve Z for Subset of S; reserve i,n for Nat; theorem :: LOPBAN_8:1 for E,F be RealNormSpace, E1 be Subset of E, f be PartFunc of E,F st E1 is dense & F is complete & dom f = E1 & f is_uniformly_continuous_on E1 holds (ex g be Function of E,F st g|E1 = f & g is_uniformly_continuous_on the carrier of E & ( for x be Point of E holds ex seq be sequence of E st rng seq c= E1 & seq is convergent & lim seq = x & f/*seq is convergent & g.x = lim f/*seq ) & ( for x be Point of E, seq be sequence of E st rng seq c= E1 & seq is convergent & lim seq = x holds f/*seq is convergent & g.x = lim f/*seq ) ) & (for g1,g2 be Function of E,F st g1|E1 = f & g1 is_continuous_on the carrier of E & g2|E1 = f & g2 is_continuous_on the carrier of E holds g1 = g2); theorem :: LOPBAN_8:2 for E,F,G be RealNormSpace, f be Point of R_NormSpace_of_BoundedLinearOperators (E,F), g be Point of R_NormSpace_of_BoundedLinearOperators (F,G) holds ex h be Point of R_NormSpace_of_BoundedLinearOperators (E,G) st h = g*f & ||.h.|| <= ||.g.||*||.f.||; theorem :: LOPBAN_8:3 for E,F be RealNormSpace, L be Lipschitzian LinearOperator of E,F holds L is_Lipschitzian_on the carrier of E & L is_uniformly_continuous_on the carrier of E; theorem :: LOPBAN_8:4 for E,F be RealNormSpace, E1 be SubRealNormSpace of E, f be Point of R_NormSpace_of_BoundedLinearOperators (E1,F) st F is complete & ex E0 be Subset of E st E0 = the carrier of E1 & E0 is dense holds (ex g be Point of R_NormSpace_of_BoundedLinearOperators (E,F) st dom g = the carrier of E & g| the carrier of E1 = f & ||.g.|| = ||.f.|| & ex Lf be PartFunc of E,F st Lf = f & (for x be Point of E holds ex seq be sequence of E st rng seq c= the carrier of E1 & seq is convergent & lim seq = x & Lf/*seq is convergent & g.x = lim Lf/*seq) & (for x be Point of E, seq be sequence of E st rng seq c= the carrier of E1 & seq is convergent & lim seq = x holds Lf/*seq is convergent & g.x = lim Lf/*seq) ) & (for g1,g2 be Point of R_NormSpace_of_BoundedLinearOperators (E,F) st g1| the carrier of E1 = f & g2| the carrier of E1 = f holds g1 = g2); begin :: Basic Properties of Currying theorem :: LOPBAN_8:5 for E,F,G be non empty set, f be Function of [:E,F:],G, x be object st x in E holds (curry f).x is Function of F,G; theorem :: LOPBAN_8:6 for E,F,G be non empty set, f be Function of [:E,F:],G, y be object st y in F holds (curry' f).y is Function of E,G; theorem :: LOPBAN_8:7 for E,F,G be non empty set, f be Function of [:E,F:],G, x,y be object st x in E & y in F holds ( (curry f).x ).y = f.(x,y); theorem :: LOPBAN_8:8 for E,F,G be non empty set, f be Function of [:E,F:],G, x,y be object st x in E & y in F holds ( (curry' f).y ).x = f.(x,y); definition ::: probably better define it for general modules let E,F,G be RealLinearSpace; let f be Function of [:the carrier of E,the carrier of F:],the carrier of G; attr f is Bilinear means :: LOPBAN_8:def 1 ( for v being Point of E st v in dom (curry f) holds (curry f).v is additive homogeneous Function of F,G ) & ( for v being Point of F st v in dom (curry' f) holds (curry' f).v is additive homogeneous Function of E,G ); end; begin :: Equivalence of Some Definitions of Continuity of Bounded :: Bilinear Operators theorem :: LOPBAN_8:9 ::: functorial registration for E,F,G be RealLinearSpace holds ( [:the carrier of E,the carrier of F:] ) --> 0.G is Bilinear; registration let E,F,G be RealLinearSpace; cluster Bilinear for Function of [: the carrier of E, the carrier of F:], the carrier of G; end; theorem :: LOPBAN_8:10 for E,F,G be RealLinearSpace, L be Function of [:the carrier of E,the carrier of F:], the carrier of G holds L is Bilinear iff ( ( for x1,x2 be Point of E, y be Point of F holds L.(x1+x2,y) = L.(x1,y) + L.(x2,y) ) & ( for x be Point of E, y be Point of F, a be Real holds L.(a * x, y) = a * L.(x,y) ) & ( for x be Point of E, y1,y2 be Point of F holds L.(x,y1+y2) = L.(x,y1) + L.(x,y2) ) & ( for x be Point of E, y be Point of F, a be Real holds L.(x, a*y) = a * L.(x,y) ) ); definition let E,F,G be RealLinearSpace; let f be Function of [:E,F:],G; attr f is Bilinear means :: LOPBAN_8:def 2 ex g be Function of [:the carrier of E,the carrier of F:], the carrier of G st f = g & g is Bilinear; end; registration let E,F,G be RealLinearSpace; cluster Bilinear for Function of [:E,F:],G; end; definition let E,F,G be RealLinearSpace; let f be Function of [:E,F:],G; let x be Point of E; let y be Point of F; redefine func f.(x,y) -> Point of G; end; theorem :: LOPBAN_8:11 for E,F,G be RealLinearSpace, L be Function of [:E,F:],G holds L is Bilinear iff ( ( for x1,x2 be Point of E, y be Point of F holds L.(x1+x2,y) = L.(x1,y) + L.(x2,y) ) & ( for x be Point of E, y be Point of F, a be Real holds L.(a*x,y) = a * L.(x,y) ) & ( for x be Point of E, y1,y2 be Point of F holds L.(x,y1+y2) = L.(x,y1) + L.(x,y2) ) & ( for x be Point of E, y be Point of F, a be Real holds L. (x, a*y) = a * L.(x,y) ) ); definition let E,F,G be RealLinearSpace; mode BilinearOperator of E,F,G is Bilinear Function of [:E,F:],G; end; definition let E,F,G be RealNormSpace; let f be Function of [:E,F:],G; attr f is Bilinear means :: LOPBAN_8:def 3 ex g be Function of [:the carrier of E, the carrier of F:], the carrier of G st f = g & g is Bilinear; end; registration let E,F,G be RealNormSpace; cluster Bilinear for Function of [:E,F:],G; end; definition let E,F,G be RealNormSpace; mode BilinearOperator of E,F,G is Bilinear Function of [:E,F:],G; end; reserve E,F,G for RealNormSpace; reserve L for BilinearOperator of E,F,G; reserve x for Element of E; reserve y for Element of F; definition let E,F,G be RealNormSpace; let f be Function of [:E,F:], G; let x be Point of E; let y be Point of F; redefine func f.(x,y) -> Point of G; end; theorem :: LOPBAN_8:12 for E,F,G be RealNormSpace, L be Function of [:E,F:],G holds L is Bilinear iff ( ( for x1,x2 be Point of E, y be Point of F holds L.(x1+x2,y) = L.(x1,y) + L.(x2,y) ) & ( for x be Point of E, y be Point of F, a be Real holds L.(a*x, y) = a * L.(x,y) ) & ( for x be Point of E, y1,y2 be Point of F holds L.(x,y1+y2) = L.(x,y1) + L.(x,y2) ) & ( for x be Point of E, y be Point of F, a be Real holds L.(x,a*y) = a * L.(x,y) ) ); theorem :: LOPBAN_8:13 for E,F,G be RealNormSpace, f be BilinearOperator of E,F,G holds ( f is_continuous_on the carrier of [:E,F:] iff f is_continuous_in 0.( [:E,F:] ) ) & ( f is_continuous_on the carrier of [:E,F:] iff ex K be Real st 0 <= K & for x be Point of E,y be Point of F holds ||. f.(x,y) .|| <= K * ||.x.|| * ||.y.|| );