:: Uniform Boundedness Principle :: by Hideki Sakurai , Hisayoshi Kunimune and Yasunari Shidama :: :: Received October 9, 2007 :: Copyright (c) 2007-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, SEQ_1, REAL_1, XXREAL_2, CARD_1, XXREAL_0, ORDINAL2, VALUED_1, RELAT_1, RINFSUP1, FUNCT_2, FUNCT_1, TARSKI, XBOOLE_0, SUBSET_1, ARYTM_3, COMPLEX1, NAT_1, SEQ_4, MEMBER_1, LOPBAN_1, NORMSP_2, REWRITE1, BHSP_3, RSSPACE3, METRIC_1, SEQ_2, NORMSP_1, PRE_TOPC, ARYTM_1, STRUCT_0, PROB_1, RCOMP_1, PCOMPS_1, NFCONT_1, CFCONT_1, FCONT_1, RLVECT_1, PARTFUN1, ZFMISC_1, CARD_3, SUPINF_2, PBOOLE, TOPS_1; notations TARSKI, ZFMISC_1, XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_1, FUNCT_2, XCMPLX_0, PRE_TOPC, TOPS_1, COMPLEX1, REAL_1, ORDINAL1, NAT_1, STRUCT_0, CARD_3, NUMBERS, XREAL_0, RINFSUP1, XXREAL_0, VALUED_1, SEQ_1, SEQ_2, SEQ_4, XXREAL_2, RLVECT_1, TBSP_1, METRIC_1, PCOMPS_1, NORMSP_0, NORMSP_1, NORMSP_2, RSSPACE3, LOPBAN_1, NFCONT_1, INTEGRA2, KURATO_2; constructors REAL_1, COMPLEX1, TOPS_1, TBSP_1, NFCONT_1, RINFSUP1, INTEGRA2, PROB_1, NORMSP_2, RSSPACE3, LOPBAN_1, RVSUM_1, SEQ_4, RELSET_1, BINOP_2, SEQ_2, PCOMPS_1, COMSEQ_2, BINOP_1; registrations NUMBERS, XREAL_0, XBOOLE_0, ORDINAL1, RELSET_1, STRUCT_0, MEMBERED, SUBSET_1, NAT_1, NORMSP_1, NORMSP_2, FUNCT_2, LOPBAN_1, VALUED_0, VALUED_1, SEQ_2, NORMSP_0; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; begin :: Uniform Boundedness Principle theorem :: LOPBAN_5:1 for seq be Real_Sequence, r be Real st seq is bounded & 0<=r holds lim_inf(r(#)seq)=r*(lim_inf seq); theorem :: LOPBAN_5:2 for seq be Real_Sequence, r be Real st seq is bounded & 0<=r holds lim_sup(r(#)seq)=r*(lim_sup seq); registration let X be RealBanachSpace; cluster MetricSpaceNorm X -> complete; end; definition let X be RealNormSpace, x0 be Point of X, r be Real; func Ball (x0,r) -> Subset of X equals :: LOPBAN_5:def 1 { x where x is Point of X : ||.x0-x .|| < r }; end; ::$N Baire Category Theorem (Banach spaces) theorem :: LOPBAN_5:3 :: Baire category theorem - Banach space version for X be RealBanachSpace, Y be SetSequence of X st union rng Y = the carrier of X & (for n be Nat holds Y.n is closed) ex n0 be Nat, r be Real, x0 be Point of X st 0 < r & Ball (x0,r) c= Y.n0; theorem :: LOPBAN_5:4 for X,Y be RealNormSpace, f be Lipschitzian LinearOperator of X,Y holds f is_Lipschitzian_on the carrier of X & f is_continuous_on the carrier of X & for x be Point of X holds f is_continuous_in x; theorem :: LOPBAN_5:5 for X be RealBanachSpace, Y be RealNormSpace, T be Subset of R_NormSpace_of_BoundedLinearOperators(X,Y) st for x be Point of X ex K be Real st 0 <= K & for f be Point of R_NormSpace_of_BoundedLinearOperators(X,Y) st f in T holds ||. f.x .|| <= K holds ex L be Real st 0 <= L & for f be Point of R_NormSpace_of_BoundedLinearOperators(X,Y) st f in T holds ||.f.|| <= L; definition let X, Y be RealNormSpace, H be sequence of the carrier of R_NormSpace_of_BoundedLinearOperators(X,Y), x be Point of X; func H # x -> sequence of Y means :: LOPBAN_5:def 2 for n be Nat holds it.n = (H.n).x; end; theorem :: LOPBAN_5:6 for X be RealBanachSpace, Y be RealNormSpace, vseq be sequence of R_NormSpace_of_BoundedLinearOperators(X,Y), tseq be Function of X,Y st ( for x be Point of X holds vseq#x is convergent & tseq.x = lim(vseq#x) ) holds tseq is Lipschitzian LinearOperator of X,Y & (for x be Point of X holds ||.tseq.x.|| <=(lim_inf ||.vseq.|| ) * ||.x.|| ) & for ttseq be Point of R_NormSpace_of_BoundedLinearOperators(X,Y) st ttseq = tseq holds ||.ttseq.|| <= lim_inf ||.vseq.||; begin :: Banach-Steinhaus Principle ::$N Banach-Steinhaus theorem (uniform boundedness) theorem :: LOPBAN_5:7 for X be RealBanachSpace, X0 be Subset of LinearTopSpaceNorm(X), Y be RealBanachSpace, vseq be sequence of R_NormSpace_of_BoundedLinearOperators (X,Y) st X0 is dense & (for x be Point of X st x in X0 holds vseq#x is convergent) & (for x be Point of X ex K be Real st 0<=K & for n be Nat holds ||.(vseq#x).n.|| <=K) holds for x be Point of X holds vseq #x is convergent; theorem :: LOPBAN_5:8 for X,Y be RealBanachSpace, X0 be Subset of LinearTopSpaceNorm(X), vseq be sequence of R_NormSpace_of_BoundedLinearOperators(X,Y) st X0 is dense & ( for x be Point of X st x in X0 holds vseq#x is convergent ) & ( for x be Point of X ex K be Real st 0<=K & ( for n be Nat holds ||. ( vseq#x).n .|| <= K ) ) holds ex tseq be Point of R_NormSpace_of_BoundedLinearOperators(X,Y) st ( for x be Point of X holds vseq# x is convergent & tseq.x=lim (vseq#x) & ||.tseq.x.|| <= lim_inf ||.vseq.|| * ||.x.|| ) & ||.tseq.|| <= lim_inf ||.vseq.||;