:: The Exponential Function on {B}anach Algebra :: by Yasunari Shidama :: :: Received February 13, 2004 :: Copyright (c) 2004-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, LOPBAN_2, SUBSET_1, NAT_1, SEQ_1, XBOOLE_0, ALGSTR_0, RELAT_1, COMSEQ_3, ARYTM_3, CARD_1, PREPOWER, FUNCT_1, MESFUNC1, SEQ_2, ORDINAL2, ARYTM_1, SUPINF_2, REAL_1, XXREAL_0, NORMSP_1, PRE_TOPC, XXREAL_2, SERIES_1, COMPLEX1, SIN_COS, REALSET1, STRUCT_0, VALUED_1, NEWTON, LOPBAN_3, CARD_3, VALUED_0, RSSPACE3, LOPBAN_4; notations SUBSET_1, RELAT_1, FUNCT_1, FUNCT_2, XXREAL_0, XREAL_0, VALUED_0, PRE_TOPC, ALGSTR_0, ORDINAL1, NUMBERS, XCMPLX_0, COMPLEX1, NORMSP_0, NORMSP_1, RSSPACE3, SEQ_1, SEQ_2, NEWTON, REAL_1, NAT_1, STRUCT_0, SERIES_1, NAT_D, SIN_COS, RLVECT_1, BHSP_4, LOPBAN_2, LOPBAN_3; constructors REAL_1, SQUARE_1, SEQ_2, COMSEQ_3, NAT_D, SIN_COS, BHSP_4, RSSPACE3, LOPBAN_3, RELSET_1, COMSEQ_2; registrations ORDINAL1, RELSET_1, XXREAL_0, XREAL_0, NAT_1, MEMBERED, SIN_COS, STRUCT_0, GROUP_1, LOPBAN_2, LOPBAN_3, VALUED_0, SEQ_2, NUMBERS, FUNCT_2, NEWTON; requirements SUBSET, REAL, BOOLE, NUMERALS, ARITHM; begin :: Basic Properties of Exponential Function on Banach Algebra reserve X for Banach_Algebra, w,z,z1,z2 for Element of X, k,l,m,n,n1,n2 for Nat, seq,seq1,seq2,s,s9 for sequence of X, rseq for Real_Sequence; definition let X be non empty multMagma; let x,y be Element of X; pred x,y are_commutative means :: LOPBAN_4:def 1 x * y = y * x; reflexivity; symmetry; end; theorem :: LOPBAN_4:1 seq1 is convergent & seq2 is convergent & lim(seq1-seq2)=0.X implies lim seq1 = lim seq2; theorem :: LOPBAN_4:2 for z st for n being Nat holds s.n = z holds lim s = z; theorem :: LOPBAN_4:3 s is convergent & s9 is convergent implies s * s9 is convergent; theorem :: LOPBAN_4:4 s is convergent implies z * s is convergent; theorem :: LOPBAN_4:5 s is convergent implies s*z is convergent; theorem :: LOPBAN_4:6 s is convergent implies lim (z * s) =z* lim(s); theorem :: LOPBAN_4:7 s is convergent implies lim (s*z) = lim(s)*z; theorem :: LOPBAN_4:8 s is convergent & s9 is convergent implies lim(s*s9)=(lim s)*(lim s9); theorem :: LOPBAN_4:9 Partial_Sums(z * seq) = z * Partial_Sums(seq) & Partial_Sums(seq *z ) = Partial_Sums(seq) *z; theorem :: LOPBAN_4:10 ||.Partial_Sums(seq).k.|| <= Partial_Sums(||.seq.||).k; theorem :: LOPBAN_4:11 (for n st n <= m holds seq1.n = seq2.n) implies Partial_Sums( seq1).m =Partial_Sums(seq2).m; theorem :: LOPBAN_4:12 (for n holds ||. seq.n .|| <= rseq.n) & rseq is convergent & lim (rseq)=0 implies seq is convergent & lim(seq)=0.X; definition let X; let z be Element of X; func z rExpSeq -> sequence of X means :: LOPBAN_4:def 2 for n holds it.n = 1/(n! )*(z #N n); end; scheme :: LOPBAN_4:sch 1 ExNormSpaceCASE {RNS()->non empty Banach_Algebra, F(Nat,Nat)-> Point of RNS() }: for k holds ex seq be sequence of RNS() st for n holds (n <= k implies seq.n=F(k,n)) & (n > k implies seq.n=0.RNS()); theorem :: LOPBAN_4:13 (for k st 0 < k holds ((k-'1)! ) * k = k!) & for m,k st k <= m holds ((m-'k)! ) * (m+1-k) = (m+1-'k)!; definition let n be Nat; func Coef(n) -> Real_Sequence means :: LOPBAN_4:def 3 for k be Nat holds (k <= n implies it.k = n! /( (k! ) * (( n -' k)!) ) ) &(k > n implies it.k=0); end; definition let n be Nat; func Coef_e(n) -> Real_Sequence means :: LOPBAN_4:def 4 for k be Nat holds ( k <= n implies it.k = 1/((k! ) * ((n -' k)! ))) & (k > n implies it.k=0); end; definition let X be non empty ZeroStr, seq be sequence of X; func Shift seq -> sequence of X means :: LOPBAN_4:def 5 it.0 = 0.X & for k be Nat holds it.(k+1) = seq.k; end; definition let n; let X; let z,w be Element of X; func Expan(n,z,w) -> sequence of X means :: LOPBAN_4:def 6 for k be Nat holds ( k <= n implies it.k=((Coef(n)).k) * (z #N k) * (w #N (n-' k)) ) & (n < k implies it.k=0.X); end; definition let n; let X; let z,w be Element of X; func Expan_e(n,z,w) -> sequence of X means :: LOPBAN_4:def 7 for k be Nat holds ( k <= n implies it.k=((Coef_e(n)).k) * (z #N k) * (w #N (n-' k)) ) & (n < k implies it.k=0.X ); end; definition let n; let X; let z,w be Element of X; func Alfa(n,z,w) -> sequence of X means :: LOPBAN_4:def 8 for k be Nat holds ( k <= n implies it.k= (z rExpSeq).k * Partial_Sums(w rExpSeq).(n-'k) ) & ( n < k implies it.k=0.X); end; definition let X; let z, w be Element of X; let n be Nat; func Conj(n,z,w) -> sequence of X means :: LOPBAN_4:def 9 for k be Nat holds ( k <= n implies it.k= (z rExpSeq).k * (Partial_Sums(w rExpSeq).n -Partial_Sums (w rExpSeq).(n-'k))) & (n < k implies it.k=0.X); end; theorem :: LOPBAN_4:14 z rExpSeq.(n+1) = (1/(n+1) * z) * (z rExpSeq.n) & z rExpSeq.0=1. X & ||.(z rExpSeq).n.|| <= (||.z.|| rExpSeq ).n; theorem :: LOPBAN_4:15 for X being non empty ZeroStr, seq being sequence of X holds 0 < k implies (Shift(seq)).k=seq.(k -' 1); theorem :: LOPBAN_4:16 Partial_Sums(seq).k=Partial_Sums(Shift(seq)).k+seq.k; theorem :: LOPBAN_4:17 for z,w st z,w are_commutative holds (z+w) #N n = Partial_Sums( Expan(n,z,w)).n; theorem :: LOPBAN_4:18 Expan_e(n,z,w)=(1/(n!)) * Expan(n,z,w); theorem :: LOPBAN_4:19 for z,w st z,w are_commutative holds 1/ (n! ) *((z+w) #N n) = Partial_Sums(Expan_e(n,z,w)).n; theorem :: LOPBAN_4:20 0.X rExpSeq is norm_summable & Sum(0.X rExpSeq)=1.X; registration let X; let z be Element of X; cluster z rExpSeq -> norm_summable; end; theorem :: LOPBAN_4:21 (z rExpSeq).0 = 1.X & Expan(0,z,w).0 = 1.X; theorem :: LOPBAN_4:22 l <= k implies (Alfa(k+1,z,w)).l = (Alfa(k,z,w)).l + Expan_e(k+1 ,z,w).l; theorem :: LOPBAN_4:23 Partial_Sums((Alfa(k+1,z,w))).k = (Partial_Sums(( Alfa(k,z,w)))) .k + (Partial_Sums(( Expan_e(k+1,z,w) ))).k; theorem :: LOPBAN_4:24 (z rExpSeq).k=(Expan_e(k,z,w)).k; theorem :: LOPBAN_4:25 for z,w st z,w are_commutative holds Partial_Sums((z+w) rExpSeq) .n = Partial_Sums(Alfa(n,z,w)).n; theorem :: LOPBAN_4:26 for z,w st z,w are_commutative holds Partial_Sums(z rExpSeq).k * Partial_Sums(w rExpSeq).k -Partial_Sums((z+w) rExpSeq).k = Partial_Sums(Conj(k, z,w)).k; theorem :: LOPBAN_4:27 for n being Nat holds 0 <= (||. z .|| rExpSeq).n; theorem :: LOPBAN_4:28 for k being Nat holds ||. Partial_Sums((z rExpSeq)).k .|| <= Partial_Sums(||.z.|| rExpSeq).k & Partial_Sums((||.z.|| rExpSeq)).k <= Sum(||.z.|| rExpSeq) & ||. Partial_Sums(( z rExpSeq)).k .|| <= Sum(||.z.|| rExpSeq); theorem :: LOPBAN_4:29 1 <= Sum(||.z.|| rExpSeq); theorem :: LOPBAN_4:30 |.(Partial_Sums(||.z.|| rExpSeq)).n.| = Partial_Sums(||.z.|| rExpSeq).n & (n <= m implies |.(Partial_Sums(||.z.|| rExpSeq).m-Partial_Sums( ||.z.|| rExpSeq).n).| = Partial_Sums(||.z.|| rExpSeq).m-Partial_Sums(||.z.|| rExpSeq).n); theorem :: LOPBAN_4:31 |.Partial_Sums(||.Conj(k,z,w).||).n.|=Partial_Sums(||.Conj(k,z, w).||).n; theorem :: LOPBAN_4:32 for p being Real st p>0 ex n st for k st n <= k holds |.Partial_Sums(||.Conj(k,z,w).||).k.| < p; theorem :: LOPBAN_4:33 for seq st for k holds seq.k=Partial_Sums((Conj(k,z,w))).k holds seq is convergent & lim(seq)=0.X; definition let X be Banach_Algebra; func exp_ X -> Function of the carrier of X, the carrier of X means :: LOPBAN_4:def 10 for z being Element of X holds it.z=Sum(z rExpSeq); end; definition let X,z; func exp z -> Element of X equals :: LOPBAN_4:def 11 (exp_ X).z; end; theorem :: LOPBAN_4:34 for z holds exp(z)=Sum(z rExpSeq); theorem :: LOPBAN_4:35 for z1,z2 st z1,z2 are_commutative holds exp(z1+z2)=exp(z1) *exp (z2) &exp(z2+z1)=exp(z2) *exp(z1) &exp(z1+z2)=exp(z2+z1) &exp(z1),exp(z2) are_commutative; theorem :: LOPBAN_4:36 for z1,z2 st z1,z2 are_commutative holds z1* exp(z2)=exp(z2)*z1; theorem :: LOPBAN_4:37 exp(0.X) = 1.X; theorem :: LOPBAN_4:38 exp(z)*exp(-z)= 1.X & exp(-z)*exp(z)= 1.X; theorem :: LOPBAN_4:39 exp(z) is invertible & (exp(z))" = exp(-z) & exp(-z) is invertible & ( exp(-z))" = exp(z); theorem :: LOPBAN_4:40 for z for s,t be Real holds s*z,t*z are_commutative; theorem :: LOPBAN_4:41 for z for s,t be Real holds exp(s*z)*exp(t*z) = exp((s+t)*z) & exp(t*z )*exp(s*z) = exp((t+s)*z) & exp((s+t)*z) = exp((t+s)*z) & exp(s*z),exp(t*z) are_commutative;