:: Isomorphisms from the Space of Multilinear Operators :: by Kazuhisa Nakasho :: :: Received May 27, 2019 :: Copyright (c) 2019-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies LOPBAN12, LOPBAN10, NUMBERS, REAL_1, ZFMISC_1, NORMSP_1, PRE_TOPC, FUNCT_1, SUBSET_1, RELAT_1, LOPBAN_1, ARYTM_3, GROUP_2, FUNCT_4, VECTMETR, FUNCT_2, SUPINF_2, FCONT_1, STRUCT_0, CARD_1, SEQ_4, MONOID_0, XXREAL_0, FINSEQ_1, RLVECT_1, NDIFF_7, PRVECT_1, PRVECT_2, CARD_3, PDIFF_1, LOPBAN_8, LOPBAN_9; notations TARSKI, SUBSET_1, RELAT_1, FUNCT_1, PARTFUN1, FUNCT_2, FUNCT_7, BINOP_1, NUMBERS, MONOID_0, XCMPLX_0, XXREAL_0, XREAL_0, CARD_3, FINSEQ_1, SEQ_4, STRUCT_0, PRE_TOPC, RLVECT_1, NORMSP_0, NORMSP_1, MAZURULM, RVSUM_1, LOPBAN_1, PRVECT_1, PRVECT_2, PRVECT_3, NDIFF_5, NDIFF_7, LOPBAN_8, LOPBAN_9, LOPBAN10; constructors SEQ_4, RELSET_1, RSSPACE3, NDIFF_5, DOMAIN_1, ABIAN, NDIFF_7, MONOID_0, LOPBAN_9, LOPBAN10; registrations RELSET_1, STRUCT_0, XREAL_0, MEMBERED, FUNCT_1, FINSEQ_1, NUMBERS, XBOOLE_0, NDIFF_5, LOPBAN_1, PRVECT_2, PRVECT_3, NDIFF_7, CARD_3, MONOID_0, FUNCT_7, LOPBAN_9, LOPBAN10, FUNCT_2, PRVECT_1; requirements SUBSET, BOOLE, NUMERALS, ARITHM; begin :: Plain Isomorphisms from the Space of Multilinear Operators reserve X,Y,Z,E,F,G,S,T for RealLinearSpace; registration let G be RealLinearSpace-Sequence; cluster product G -> constituted-FinSeqs; end; theorem :: LOPBAN12:1 for s being Element of product <*E,F*>, i being Element of dom <*E,F*>, x1 being object holds len(s +* (i,x1)) = 2; theorem :: LOPBAN12:2 for G be RealLinearSpace-Sequence, i be Element of dom G, x be Element of product G holds for r being Element of (G.i) holds reproj (i,x) . r = x +* (i,r); definition let X, Y be RealLinearSpace; func IsoCPRLSP(X,Y) -> LinearOperator of [:X,Y:],product <*X,Y*> means :: LOPBAN12:def 1 for x be Point of X, y be Point of Y holds it.(x,y) = <*x,y*>; end; theorem :: LOPBAN12:3 for X, Y be RealLinearSpace holds 0.product <*X,Y*> = IsoCPRLSP(X,Y).(0.[:X,Y:]); registration let X, Y be RealLinearSpace; cluster IsoCPRLSP(X,Y) -> bijective; end; registration let X, Y be RealLinearSpace; cluster bijective for LinearOperator of [:X,Y:],product <*X,Y*>; end; theorem :: LOPBAN12:4 for I be LinearOperator of S, T st I is bijective holds ex J be LinearOperator of T, S st J = I" & J is bijective; definition let X, Y be RealLinearSpace; let f be bijective LinearOperator of [:X,Y:],product <*X,Y*>; redefine func f" -> LinearOperator of product <*X,Y*>,[:X,Y:]; end; registration let X, Y be RealLinearSpace; let f be bijective LinearOperator of [:X,Y:],product <*X,Y*>; cluster f" -> bijective for LinearOperator of product <*X,Y*>,[:X,Y:]; end; registration let X, Y be RealLinearSpace; cluster bijective for LinearOperator of product <*X,Y*>,[:X,Y:]; end; theorem :: LOPBAN12:5 for X, Y be RealLinearSpace, x be Point of X, y be Point of Y holds (IsoCPRLSP(X,Y)").<*x,y*> = [x,y]; theorem :: LOPBAN12:6 for X, Y be RealLinearSpace holds (IsoCPRLSP(X,Y)").(0. product <*X,Y*>) = 0.[:X,Y:]; theorem :: LOPBAN12:7 for u be MultilinearOperator of <*E,F*>,G holds u * (IsoCPRLSP (E,F)) is BilinearOperator of E,F,G; theorem :: LOPBAN12:8 for u be BilinearOperator of E,F,G holds u * (IsoCPRLSP (E,F))" is MultilinearOperator of <*E,F*>,G; theorem :: LOPBAN12:9 ex I be LinearOperator of R_VectorSpace_of_BilinearOperators(X,Y,Z), R_VectorSpace_of_MultilinearOperators(<*X,Y*>,Z) st I is bijective & for u be Point of R_VectorSpace_of_BilinearOperators(X,Y,Z) holds I.u = u * (IsoCPRLSP(X,Y))"; theorem :: LOPBAN12:10 ex I be LinearOperator of R_VectorSpace_of_LinearOperators (X,R_VectorSpace_of_LinearOperators(Y,Z)), R_VectorSpace_of_MultilinearOperators(<*X,Y*>,Z) st I is bijective & for u be Point of R_VectorSpace_of_LinearOperators(X, R_VectorSpace_of_LinearOperators(Y,Z)) holds for x be Point of X,y be Point of Y holds (I.u).<*x,y*> = (u.x).y; begin :: Extensions to Isometric Isomorphism from the Normed Space of :: Multilinear Operators reserve X,Y,Z,E,F,G for RealNormSpace; reserve S,T for RealNormSpace-Sequence; theorem :: LOPBAN12:11 for s being Point of product <*E,F*>, i being Element of dom <*E,F*>, x1 being object holds len(s +* (i,x1)) = 2; theorem :: LOPBAN12:12 for u be Lipschitzian MultilinearOperator of <*E,F*>,G holds u * (IsoCPNrSP(E,F)) is Lipschitzian BilinearOperator of E,F,G; theorem :: LOPBAN12:13 for u be Lipschitzian BilinearOperator of E,F,G holds u * (IsoCPNrSP(E,F))" is Lipschitzian MultilinearOperator of <*E,F*>,G; theorem :: LOPBAN12:14 ex I be LinearOperator of R_NormSpace_of_BoundedBilinearOperators(X,Y,Z), R_NormSpace_of_BoundedMultilinearOperators(<*X,Y*>,Z) st I is bijective isometric & for u be Point of R_NormSpace_of_BoundedBilinearOperators(X,Y,Z) holds I.u = u * (IsoCPNrSP(X,Y))"; theorem :: LOPBAN12:15 ex I be LinearOperator of R_NormSpace_of_BoundedLinearOperators (X,R_NormSpace_of_BoundedLinearOperators(Y,Z)), R_NormSpace_of_BoundedMultilinearOperators(<*X,Y*>,Z) st I is bijective isometric & for u be Point of R_NormSpace_of_BoundedLinearOperators (X,R_NormSpace_of_BoundedLinearOperators(Y,Z)) holds ||.u.|| = ||. I.u .|| & for x be Point of X,y be Point of Y holds (I.u).<*x,y*> = (u.x).y; theorem :: LOPBAN12:16 for X,Y being RealNormSpace-Sequence, Z being RealNormSpace ex I be LinearOperator of R_NormSpace_of_BoundedLinearOperators (product X,R_NormSpace_of_BoundedLinearOperators(product Y,Z)), R_NormSpace_of_BoundedMultilinearOperators(<*product X,product Y*>,Z) st I is bijective isometric & for u be Point of R_NormSpace_of_BoundedLinearOperators (product X,R_NormSpace_of_BoundedLinearOperators(product Y,Z )) holds ||.u.|| = ||. I.u .|| & for x be Point of product X,y be Point of product Y holds (I.u).<*x,y*> = (u.x).y;