:: Continuity of Multilinear Operator on Normed Linear Spaces :: by Kazuhisa Nakasho and Yasunari Shidama :: :: Received February 27, 2019 :: Copyright (c) 2019-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies LOPBAN10, NUMBERS, REAL_1, ZFMISC_1, NORMSP_1, PRE_TOPC, PARTFUN1, FUNCT_1, ORDINAL4, ORDINAL1, NEWTON, NAT_1, SUBSET_1, SEQ_1, RSSPACE3, FINSEQ_2, RELAT_1, LOPBAN_1, SQUARE_1, TARSKI, ARYTM_3, VALUED_1, GROUP_2, FUNCT_4, ARYTM_1, SEQ_2, ORDINAL2, SUPINF_2, FCONT_1, STRUCT_0, CARD_1, SEQ_4, METRIC_1, XXREAL_0, XBOOLE_0, FINSEQ_1, CFCONT_1, PRVECT_1, RVSUM_1, PRVECT_2, CARD_3, PDIFF_1, REWRITE1, POWER, COMPLEX1; notations TARSKI, XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_1, PARTFUN1, FUNCT_2, FUNCT_7, ORDINAL1, NUMBERS, XCMPLX_0, XXREAL_0, XREAL_0, SQUARE_1, CARD_3, NAT_1, COMPLEX1, FINSEQ_1, FINSEQ_2, VALUED_1, NAT_D, SEQ_1, SEQ_2, SEQ_4, NEWTON, POWER, STRUCT_0, PRE_TOPC, RLVECT_1, RSSPACE3, NORMSP_0, NORMSP_1, RVSUM_1, EUCLID, LOPBAN_1, LOPBAN_5, NFCONT_1, PRVECT_1, PRVECT_2, NDIFF_5, LOPBAN10; constructors SQUARE_1, SEQ_2, SEQ_4, NFCONT_1, COMSEQ_2, RELSET_1, NAT_D, SERIES_1, RSSPACE3, NDIFF_5, NEWTON, ABIAN, NDIFF_8, MONOID_0, SEQ_1, LOPBAN_5, REAL_1, PARTFUN3, LOPBAN10, FOMODEL0; registrations RELSET_1, STRUCT_0, XREAL_0, MEMBERED, FUNCT_1, VALUED_0, VALUED_1, FINSEQ_1, FINSEQ_2, FUNCT_2, NUMBERS, XBOOLE_0, RELAT_1, ORDINAL1, INT_1, PRVECT_2, XXREAL_0, NORMSP_0, NAT_1, NORMSP_1, SQUARE_1, RLVECT_1, MONOID_0, RVSUM_1, XCMPLX_0, PARTFUN3, SEQ_2, POWER, LOPBAN10, NEWTON, PRVECT_1; requirements SUBSET, REAL, BOOLE, NUMERALS, ARITHM; begin :: Completeness of the Space of Multilinear Operators theorem :: LOPBAN11:1 :::: preliminaries for n be Nat, r be Real st 0 < r ex s be Real st 0 < s & s < r & sqrt((s*s) * n) < r; theorem :: LOPBAN11:2 for R1,R2 be FinSequence of REAL, n,i be Nat, r be Real st i in dom R1 & R1 = n |-> (1 qua Real) & R2 = R1 +* (i,r) holds Product R2 = r; theorem :: LOPBAN11:3 :::: for F being FinSequence of REAL st (for k being Element of NAT st k in dom F holds 0 <= F.k) holds 0 <= Product F; ::: generalize NAT_4:54 in FINSEQ_9:34 reserve X,G for RealNormSpace-Sequence, Y for RealNormSpace; reserve f for MultilinearOperator of X,Y; theorem :: LOPBAN11:4 ::: should be proven before dom carr X = dom X; theorem :: LOPBAN11:5 for z be Element of product X st z = 0.product X holds for i be Element of dom X holds z.i = 0.(X.i); theorem :: LOPBAN11:6 f.(0.product X) = 0.Y; theorem :: LOPBAN11:7 ::: LOPBAN10 lemma; NAT_4:42 for F be FinSequence of REAL st for i be Element of dom F holds F.i > 0 holds Product F > 0; theorem :: LOPBAN11:8 for X be RealNormSpace-Sequence, Y be RealNormSpace st Y is complete for seq be sequence of R_NormSpace_of_BoundedMultilinearOperators(X,Y) st seq is Cauchy_sequence_by_Norm holds seq is convergent; theorem :: LOPBAN11:9 for X be RealNormSpace-Sequence for Y be RealBanachSpace holds R_NormSpace_of_BoundedMultilinearOperators(X,Y) is RealBanachSpace; registration let X be RealNormSpace-Sequence; let Y be RealBanachSpace; cluster R_NormSpace_of_BoundedMultilinearOperators (X,Y) -> complete; end; begin :: Equivalence of Continuity Definition of Multilinear Operator theorem :: LOPBAN11:10 for n be Nat, F be Element of REAL n, s be Real st for i be Nat st i in dom F holds 0 <= F.i & F.i <= s holds |.F.| <= sqrt((s*s) * len F); theorem :: LOPBAN11:11 for X be RealNormSpace-Sequence, Y be RealNormSpace, f be MultilinearOperator of X,Y, K being Real st ( 0 <= K & for x be Point of product X holds ||. f.x .|| <= K * NrProduct x ) holds for v0,v1 being Point of product X, Cv0,Cv1 be FinSequence, i be Element of dom X st Cv0 = v0 & Cv1 = v1 & ||.v1-v0.|| <= 1 & for j be Element of dom X st i <> j holds Cv1.j = Cv0.j holds ||. f/.v1 - f/.v0 .|| <= (||.v0.|| + 1) |^ len X * K * ||.(v1-v0).i.||; theorem :: LOPBAN11:12 for X be RealNormSpace-Sequence, Y be RealNormSpace, f be MultilinearOperator of X,Y, K being Real st (0 <= K & for x being Point of product X holds ||. f.x .|| <= K * NrProduct x) holds for v0 being Point of product X ex M be Real st 0 <= M & for v1 be Point of product X st ||.v1-v0.|| <= 1 holds ex F be FinSequence of REAL st dom F = dom X & ||.f/.v1 - f/.v0.|| <= M * K * Sum F & for i be Element of dom X holds F.i = ||.(v1-v0).i.||; theorem :: LOPBAN11:13 for x be Point of product X, r be Real st 0 < r ex s be FinSequence of REAL, Y be non empty non-empty FinSequence st dom s = dom X & dom Y = dom X & product Y c= Ball(x,r) & for i be Element of dom X holds 0 < s.i & s.i < r & Y.i = Ball(x.i,s.i); theorem :: LOPBAN11:14 for X be RealNormSpace-Sequence, Y be RealNormSpace, f be MultilinearOperator of X,Y holds ( f is_continuous_on the carrier of product X iff f is_continuous_in 0.( product X ) ) & ( f is_continuous_on the carrier of product X iff f is Lipschitzian );